1 |
Pradeep SP, Malik S, Slack FJ, Bahal R. Unlocking the potential of chemically modified peptide nucleic acids for RNA-based therapeutics. RNA 2023;29:434-45. [PMID: 36653113 DOI: 10.1261/rna.079498.122] [Reference Citation Analysis]
|
2 |
Kang T, Cha GD, Park OK, Cho HR, Kim M, Lee J, Kim D, Lee B, Chu J, Koo S, Hyeon T, Kim DH, Choi SH. Penetrative and Sustained Drug Delivery Using Injectable Hydrogel Nanocomposites for Postsurgical Brain Tumor Treatment. ACS Nano 2023. [PMID: 36926815 DOI: 10.1021/acsnano.2c10094] [Reference Citation Analysis]
|
3 |
Mosley RJ, Rucci B, Byrne ME. Recent advancements in design of nucleic acid nanocarriers for controlled drug delivery. J Mater Chem B 2023;11:2078-94. [PMID: 36806872 DOI: 10.1039/d2tb02325c] [Reference Citation Analysis]
|
4 |
Bhatia A, Upadhyay AK, Sharma S. miRNAs are now starring in "No Time to Die: Overcoming the chemoresistance in cancer". IUBMB Life 2023;75:238-56. [PMID: 35678612 DOI: 10.1002/iub.2652] [Reference Citation Analysis]
|
5 |
Ni R, Liu H, Song G, Fu X, Deng B, Xu Z, Dai S, Huang G. MiR-216a-3p inhibits the proliferation and invasion of fibroblast-like synoviocytes by targeting dual-specificity phosphatase 5. Int J Rheum Dis 2023. [PMID: 36843205 DOI: 10.1111/1756-185X.14622] [Reference Citation Analysis]
|
6 |
Wang Y, Malik S, Suh HW, Xiao Y, Deng Y, Fan R, Huttner A, Bindra RS, Singh V, Saltzman WM, Bahal R. Anti-seed PNAs targeting multiple oncomiRs for brain tumor therapy. Sci Adv 2023;9:eabq7459. [PMID: 36753549 DOI: 10.1126/sciadv.abq7459] [Reference Citation Analysis]
|
7 |
Kumar V, Wahane A, Gupta A, Manautou JE, Bahal R. Multivalent Lactobionic Acid and N-Acetylgalactosamine-Conjugated Peptide Nucleic Acids for Efficient In Vivo Targeting of Hepatocytes. Adv Healthc Mater 2023;:e2202859. [PMID: 36636995 DOI: 10.1002/adhm.202202859] [Reference Citation Analysis]
|
8 |
Sun Z, Wu Y, Gao F, Li H, Wang C, Du L, Dong L, Jiang Y. In situ detection of exosomal RNAs for cancer diagnosis. Acta Biomater 2023;155:80-98. [PMID: 36343908 DOI: 10.1016/j.actbio.2022.10.061] [Reference Citation Analysis]
|
9 |
Hashemi M, Mirdamadi MSA, Talebi Y, Khaniabad N, Banaei G, Daneii P, Gholami S, Ghorbani A, Tavakolpournegari A, Farsani ZM, Zarrabi A, Nabavi N, Zandieh MA, Rashidi M, Taheriazam A, Entezari M, Khan H. Pre-clinical and clinical importance of miR-21 in human cancers: Tumorigenesis, therapy response, delivery approaches and targeting agents. Pharmacol Res 2023;187:106568. [PMID: 36423787 DOI: 10.1016/j.phrs.2022.106568] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
10 |
Liu L, Zhu Z, Li X, Zheng Y. DNA methylation-induced ablation of miR-133a accelerates cancer aggressiveness in glioma through upregulating peroxisome proliferator-activated receptor γ. SLAS Discov 2023;28:19-28. [PMID: 36067936 DOI: 10.1016/j.slasd.2022.08.004] [Reference Citation Analysis]
|
11 |
Xu M, Xu L. Up-Regulation of miR-26a-5p Promoted Cell Growth and Tumor Metastasis of Intracranial Malignancy Through Phosphatase and Tensin Homolog Deleted on Chromosome Ten/Phosphatidylinositol3-Kinase/Protein Kinase B Signaling Pathway. j biomater tissue eng 2023;13:31-42. [DOI: 10.1166/jbt.2023.3228] [Reference Citation Analysis]
|
12 |
Efovi D, Xiao Q. Noncoding RNAs in Vascular Cell Biology and Restenosis. Biology (Basel) 2022;12. [PMID: 36671717 DOI: 10.3390/biology12010024] [Reference Citation Analysis]
|
13 |
Wang J, Wang J, Wang Y, Ma R, Zhang S, Zheng J, Xue W, Ding X. Bone Marrow Mesenchymal Stem Cells-Derived miR-21-5p Protects Grafted Islets Against Apoptosis by Targeting PDCD4. Stem Cells 2023;41:169-83. [PMID: 36512434 DOI: 10.1093/stmcls/sxac085] [Reference Citation Analysis]
|
14 |
Josowitz AD, Bindra RS, Saltzman WM. Polymer nanocarriers for targeted local delivery of agents in treating brain tumors. Nanotechnology 2022;34. [PMID: 36179653 DOI: 10.1088/1361-6528/ac9683] [Reference Citation Analysis]
|
15 |
Luo Y, Tian G, Fang X, Bai S, Yuan G, Pan Y. Ferroptosis and Its Potential Role in Glioma: From Molecular Mechanisms to Therapeutic Opportunities. Antioxidants 2022;11:2123. [DOI: 10.3390/antiox11112123] [Reference Citation Analysis]
|
16 |
Mitusova K, Peltek OO, Karpov TE, Muslimov AR, Zyuzin MV, Timin AS. Overcoming the blood–brain barrier for the therapy of malignant brain tumor: current status and prospects of drug delivery approaches. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01610-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
17 |
Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the Promise of Gene Therapy with Nanomedicines in Treating Central Nervous System Diseases. Advanced Science. [DOI: 10.1002/advs.202201740] [Reference Citation Analysis]
|
18 |
Chi LH, Cross RSN, Redvers RP, Davis M, Hediyeh-Zadeh S, Mathivanan S, Samuel M, Lucas EC, Mouchemore K, Gregory PA, Johnstone CN, Anderson RL. MicroRNA-21 is immunosuppressive and pro-metastatic via separate mechanisms. Oncogenesis 2022;11:38. [PMID: 35821197 DOI: 10.1038/s41389-022-00413-7] [Reference Citation Analysis]
|
19 |
Kasina V, Mownn RJ, Bahal R, Sartor GC. Nanoparticle delivery systems for substance use disorder. Neuropsychopharmacology 2022;47:1431-9. [PMID: 35351961 DOI: 10.1038/s41386-022-01311-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
20 |
Wei X, Zhang Q, Liu C, Wu S, Nong W, Ge Y, Lin L, Li F, Xie X, Luo B. Microrna-1224-5p Is a Potential Prognostic and Therapeutic Biomarker in Glioblastoma: Integrating Bioinformatics and Clinical Analyses. CURR MED SCI 2022;42:584-596. [DOI: 10.1007/s11596-022-2593-5] [Reference Citation Analysis]
|
21 |
Wang Y, Malik S, Suh H, Xiao Y, Deng Y, Fan R, Huttner A, Bindra RS, Saltzman WM, Bahal R. Anti-seed PNAs targeting multiple oncomiRs for brain tumor therapy.. [DOI: 10.1101/2022.01.31.478549] [Reference Citation Analysis]
|
22 |
Sharma RK, Calderon C, Vivas-Mejia PE. Targeting Non-coding RNA for Glioblastoma Therapy: The Challenge of Overcomes the Blood-Brain Barrier. Front Med Technol 2021;3:678593. [PMID: 35047931 DOI: 10.3389/fmedt.2021.678593] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
23 |
Xiao K, Peng G. Long non-coding RNA FAM66C regulates glioma growth via the miRNA/LATS1 signaling pathway. Biol Chem 2021. [PMID: 34954927 DOI: 10.1515/hsz-2021-0333] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
24 |
Ma X, Wang X, Liu C, Ge B, He H, Dai Q, Zhang Z, Yu J, Nau WM, Huang F. Self-assembled theranostic microcarrier targeting tumor cells with high metastatic potential. Materials & Design 2021;212:110196. [DOI: 10.1016/j.matdes.2021.110196] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
25 |
Kaushik Tiwari M, Colon-Rios DA, Tumu HCR, Liu Y, Quijano E, Krysztofiak A, Chan C, Song E, Braddock DT, Suh HW, Saltzman WM, Rogers FA. Direct targeting of amplified gene loci for proapoptotic anticancer therapy. Nat Biotechnol 2021. [PMID: 34711990 DOI: 10.1038/s41587-021-01057-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
26 |
Singh A, Singh AK, Giri R, Kumar D, Sharma R, Valis M, Kuca K, Garg N. The role of microRNA-21 in the onset and progression of cancer. Future Med Chem 2021;13:1885-906. [PMID: 34590501 DOI: 10.4155/fmc-2021-0096] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
27 |
Liu Y, Zheng M, Jiao M, Yan C, Xu S, Du Q, Morsch M, Yin J, Shi B. Polymeric nanoparticle mediated inhibition of miR-21 with enhanced miR-124 expression for combinatorial glioblastoma therapy. Biomaterials 2021;276:121036. [PMID: 34329919 DOI: 10.1016/j.biomaterials.2021.121036] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
28 |
Ward DM, Shodeinde AB, Peppas NA. Innovations in Biomaterial Design toward Successful RNA Interference Therapy for Cancer Treatment. Adv Healthc Mater 2021;10:e2100350. [PMID: 33973393 DOI: 10.1002/adhm.202100350] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
29 |
Tarlton JMR, Patterson S, Graham A. MicroRNA Sequences Modulated by Beta Cell Lipid Metabolism: Implications for Type 2 Diabetes Mellitus. Biology (Basel) 2021;10:534. [PMID: 34203703 DOI: 10.3390/biology10060534] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
30 |
Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. MicroRNA Therapeutics in Cancer: Current Advances and Challenges. Cancers (Basel) 2021;13:2680. [PMID: 34072348 DOI: 10.3390/cancers13112680] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 15.5] [Reference Citation Analysis]
|
31 |
Brachi G, Ruiz-Ramírez J, Dogra P, Wang Z, Cristini V, Ciardelli G, Rostomily RC, Ferrari M, Mikheev AM, Blanco E, Mattu C. Intratumoral injection of hydrogel-embedded nanoparticles enhances retention in glioblastoma. Nanoscale 2020;12:23838-50. [PMID: 33237080 DOI: 10.1039/d0nr05053a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
|
32 |
Finotti A, Gasparello J, Casnati A, Corradini R, Gambari R, Sansone F. Delivery of Peptide Nucleic Acids Using an Argininocalix[4]arene as Vector. Methods Mol Biol 2021;2211:123-43. [PMID: 33336275 DOI: 10.1007/978-1-0716-0943-9_10] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
33 |
Wiwatchaitawee K, Quarterman JC, Geary SM, Salem AK. Enhancement of Therapies for Glioblastoma (GBM) Using Nanoparticle-based Delivery Systems. AAPS PharmSciTech 2021;22:71. [PMID: 33575970 DOI: 10.1208/s12249-021-01928-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
|
34 |
Dasgupta I, Chatterjee A. Recent Advances in miRNA Delivery Systems. Methods Protoc 2021;4:10. [PMID: 33498244 DOI: 10.3390/mps4010010] [Cited by in Crossref: 62] [Cited by in F6Publishing: 66] [Article Influence: 31.0] [Reference Citation Analysis]
|
35 |
Oyaghire SN, Quijano E, Piotrowski-Daspit AS, Saltzman WM, Glazer PM. Poly(Lactic-co-Glycolic Acid) Nanoparticle Delivery of Peptide Nucleic Acids In Vivo. Methods Mol Biol 2020;2105:261-81. [PMID: 32088877 DOI: 10.1007/978-1-0716-0243-0_17] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
36 |
Zeeshan F. Targeting micro-ribonucleic acid (miRNA) in cancer using advanced drug delivery systems. Advanced Drug Delivery Systems in the Management of Cancer 2021. [DOI: 10.1016/b978-0-323-85503-7.00004-3] [Reference Citation Analysis]
|
37 |
Rossi SM, Murray T, McDonough L, Kelly H. Loco-regional drug delivery in oncology: current clinical applications and future translational opportunities. Expert Opin Drug Deliv 2021;18:607-23. [PMID: 33253052 DOI: 10.1080/17425247.2021.1856074] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
|
38 |
Conniot J, Talebian S, Simões S, Ferreira L, Conde J. Revisiting gene delivery to the brain: silencing and editing. Biomater Sci 2021;9:1065-87. [PMID: 33315025 DOI: 10.1039/d0bm01278e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
39 |
Kimna C, Lieleg O. Molecular micromanagement: DNA nanotechnology establishes spatio-temporal control for precision medicine. Biophysics Rev 2020;1:011305. [DOI: 10.1063/5.0033378] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
40 |
Gadhave D, Rasal N, Sonawane R, Sekar M, Kokare C. Nose-to-brain delivery of teriflunomide-loaded lipid-based carbopol-gellan gum nanogel for glioma: Pharmacological and in vitro cytotoxicity studies. Int J Biol Macromol 2021;167:906-20. [PMID: 33186648 DOI: 10.1016/j.ijbiomac.2020.11.047] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
|
41 |
Gregory JV, Kadiyala P, Doherty R, Cadena M, Habeel S, Ruoslahti E, Lowenstein PR, Castro MG, Lahann J. Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy. Nat Commun 2020;11:5687. [PMID: 33173024 DOI: 10.1038/s41467-020-19225-7] [Cited by in Crossref: 74] [Cited by in F6Publishing: 80] [Article Influence: 24.7] [Reference Citation Analysis]
|
42 |
Aloizou AM, Pateraki G, Siokas V, Mentis AA, Liampas I, Lazopoulos G, Kovatsi L, Mitsias PD, Bogdanos DP, Paterakis K, Dardiotis E. The role of MiRNA-21 in gliomas: Hope for a novel therapeutic intervention? Toxicol Rep 2020;7:1514-30. [PMID: 33251119 DOI: 10.1016/j.toxrep.2020.11.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
|
43 |
Rezaei O, Honarmand K, Nateghinia S, Taheri M, Ghafouri-Fard S. miRNA signature in glioblastoma: Potential biomarkers and therapeutic targets. Exp Mol Pathol 2020;117:104550. [PMID: 33010295 DOI: 10.1016/j.yexmp.2020.104550] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
|
44 |
Tang X, Sun C. The roles of MicroRNAs in neural regenerative medicine. Experimental Neurology 2020;332:113394. [DOI: 10.1016/j.expneurol.2020.113394] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
|
45 |
Bhargav AG, Mondal SK, Garcia CA, Green JJ, Quiñones‐hinojosa A. Nanomedicine Revisited: Next Generation Therapies for Brain Cancer. Adv Therap 2020;3:2000118. [DOI: 10.1002/adtp.202000118] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
46 |
DeCordova S, Shastri A, Tsolaki AG, Yasmin H, Klein L, Singh SK, Kishore U. Molecular Heterogeneity and Immunosuppressive Microenvironment in Glioblastoma. Front Immunol 2020;11:1402. [PMID: 32765498 DOI: 10.3389/fimmu.2020.01402] [Cited by in Crossref: 75] [Cited by in F6Publishing: 83] [Article Influence: 25.0] [Reference Citation Analysis]
|
47 |
Forterre A, Komuro H, Aminova S, Harada M. A Comprehensive Review of Cancer MicroRNA Therapeutic Delivery Strategies. Cancers (Basel) 2020;12:E1852. [PMID: 32660045 DOI: 10.3390/cancers12071852] [Cited by in Crossref: 80] [Cited by in F6Publishing: 88] [Article Influence: 26.7] [Reference Citation Analysis]
|
48 |
Wahane A, Waghmode A, Kapphahn A, Dhuri K, Gupta A, Bahal R. Role of Lipid-Based and Polymer-Based Non-Viral Vectors in Nucleic Acid Delivery for Next-Generation Gene Therapy. Molecules 2020;25:E2866. [PMID: 32580326 DOI: 10.3390/molecules25122866] [Cited by in Crossref: 49] [Cited by in F6Publishing: 54] [Article Influence: 16.3] [Reference Citation Analysis]
|
49 |
Gasparello J, Gambari L, Papi C, Rozzi A, Manicardi A, Corradini R, Gambari R, Finotti A. High Levels of Apoptosis Are Induced in the Human Colon Cancer HT-29 Cell Line by Co-Administration of Sulforaphane and a Peptide Nucleic Acid Targeting miR-15b-5p. Nucleic Acid Therapeutics 2020;30:164-74. [DOI: 10.1089/nat.2019.0825] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
|
50 |
Saha S, Yakati V, Shankar G, Jaggarapu MMCS, Moku G, Madhusudana K, Banerjee R, Ramkrishna S, Srinivas R, Chaudhuri A. Amphetamine decorated cationic lipid nanoparticles cross the blood-brain barrier: therapeutic promise for combating glioblastoma. J Mater Chem B 2020;8:4318-30. [PMID: 32330214 DOI: 10.1039/c9tb02700a] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
|
51 |
Pottoo FH, Javed MN, Rahman JU, Abu-Izneid T, Khan FA. Targeted delivery of miRNA based therapeuticals in the clinical management of Glioblastoma Multiforme. Semin Cancer Biol 2021;69:391-8. [PMID: 32302695 DOI: 10.1016/j.semcancer.2020.04.001] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 9.3] [Reference Citation Analysis]
|
52 |
Waller P, Blann AD. Non-coding RNAs - A primer for the laboratory scientist. Br J Biomed Sci 2019;76:157-65. [PMID: 31594453 DOI: 10.1080/09674845.2019.1675847] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
|
53 |
Pezuk JA, Salomão KB, Baroni M, Pereira CA, Geron L, Brassesco MS. Aberrantly expressed microRNAs and their implications in childhood central nervous system tumors. Cancer Metastasis Rev 2019;38:813-28. [PMID: 31797180 DOI: 10.1007/s10555-019-09820-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
|
54 |
Silva J, Basso J, Mendes M, Sousa J, Pais A, Vitorino C. Tailoring drug and gene codelivery nanosystems for glioblastoma treatment. Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents 2020. [DOI: 10.1016/b978-0-12-819666-3.00005-5] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
55 |
Qin X, Su Y, Tan J, Yuan Q. Artificial Nucleotide-containing Aptamers Used in Tumor Therapy. Chem Res Chin Univ 2020;36:164-70. [DOI: 10.1007/s40242-019-0033-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
56 |
Grieco GE, Brusco N, Licata G, Nigi L, Formichi C, Dotta F, Sebastiani G. Targeting microRNAs as a Therapeutic Strategy to Reduce Oxidative Stress in Diabetes. Int J Mol Sci 2019;20:E6358. [PMID: 31861156 DOI: 10.3390/ijms20246358] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
|
57 |
Gregory JV, Kadiyala P, Doherty R, Cadena M, Habeel S, Ruoslahti E, Lowenstein PR, Castro MG, Lahann J. Systemic Brain Tumor Delivery of Synthetic Protein Nanoparticles for Glioblastoma Therapy.. [DOI: 10.1101/862581] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
58 |
Silantyev AS, Falzone L, Libra M, Gurina OI, Kardashova KS, Nikolouzakis TK, Nosyrev AE, Sutton CW, Mitsias PD, Tsatsakis A. Current and Future Trends on Diagnosis and Prognosis of Glioblastoma: From Molecular Biology to Proteomics. Cells 2019;8:E863. [PMID: 31405017 DOI: 10.3390/cells8080863] [Cited by in Crossref: 101] [Cited by in F6Publishing: 109] [Article Influence: 25.3] [Reference Citation Analysis]
|
59 |
Guo Y, Hong W, Wang X, Zhang P, Körner H, Tu J, Wei W. MicroRNAs in Microglia: How do MicroRNAs Affect Activation, Inflammation, Polarization of Microglia and Mediate the Interaction Between Microglia and Glioma? Front Mol Neurosci 2019;12:125. [PMID: 31133802 DOI: 10.3389/fnmol.2019.00125] [Cited by in Crossref: 81] [Cited by in F6Publishing: 84] [Article Influence: 20.3] [Reference Citation Analysis]
|
60 |
Malik S, Bahal R. Investigation of PLGA nanoparticles in conjunction with nuclear localization sequence for enhanced delivery of antimiR phosphorothioates in cancer cells in vitro. J Nanobiotechnology 2019;17:57. [PMID: 31010426 DOI: 10.1186/s12951-019-0490-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
|