BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zeng L, Pan Y, Zou R, Zhang J, Tian Y, Teng Z, Wang S, Ren W, Xiao X, Zhang J, Zhang L, Li A, Lu G, Wu A. 808 nm-excited upconversion nanoprobes with low heating effect for targeted magnetic resonance imaging and high-efficacy photodynamic therapy in HER2-overexpressed breast cancer. Biomaterials 2016;103:116-27. [DOI: 10.1016/j.biomaterials.2016.06.037] [Cited by in Crossref: 69] [Cited by in F6Publishing: 70] [Article Influence: 11.5] [Reference Citation Analysis]
Number Citing Articles
1 Farjadian F, Ghasemi S, Akbarian M, Hoseini-ghahfarokhi M, Moghoofei M, Doroudian M. Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front Chem 2022;10:952675. [DOI: 10.3389/fchem.2022.952675] [Reference Citation Analysis]
2 Stopikowska N, Runowski M, Woźny P, Lis S, Du P. Generation of Pure Green Up-Conversion Luminescence in Er3+ Doped and Yb3+-Er3+ Co-Doped YVO4 Nanomaterials under 785 and 975 nm Excitation. Nanomaterials 2022;12:799. [DOI: 10.3390/nano12050799] [Reference Citation Analysis]
3 Molkenova A, Atabaev TS, Hong SW, Mao C, Han D, Kim KS. Designing inorganic nanoparticles into computed tomography and magnetic resonance (CT/MR) imaging-guidable photomedicines. Materials Today Nano 2022. [DOI: 10.1016/j.mtnano.2022.100187] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Wang K, Lu J, Li J, Gao Y, Mao Y, Zhao Q, Wang S. Current trends in smart mesoporous silica-based nanovehicles for photoactivated cancer therapy. J Control Release 2021;339:445-72. [PMID: 34637819 DOI: 10.1016/j.jconrel.2021.10.005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 21.0] [Reference Citation Analysis]
5 Du Q, Liu Q. ROS-responsive hollow mesoporous silica nanoparticles loaded with Glabridin for anti-pigmentation properties. Microporous and Mesoporous Materials 2021;327:111429. [DOI: 10.1016/j.micromeso.2021.111429] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
6 Yi X, Duan QY, Wu FG. Low-Temperature Photothermal Therapy: Strategies and Applications. Research (Wash D C) 2021;2021:9816594. [PMID: 34041494 DOI: 10.34133/2021/9816594] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 25.0] [Reference Citation Analysis]
7 Wang R, Yang H, Khan AR, Yang X, Xu J, Ji J, Zhai G. Redox-responsive hyaluronic acid-based nanoparticles for targeted photodynamic therapy/chemotherapy against breast cancer. J Colloid Interface Sci 2021;598:213-28. [PMID: 33901847 DOI: 10.1016/j.jcis.2021.04.056] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 21.0] [Reference Citation Analysis]
8 Liu CL, Yang J, Bai XH, Cao ZK, Yang C, Ramakrishna S, Yang DP, Zhang J, Long YZ. Dual Antibacterial Effect of In Situ Electrospun Curcumin Composite Nanofibers to Sterilize Drug-Resistant Bacteria. Nanoscale Res Lett 2021;16:54. [PMID: 33826006 DOI: 10.1186/s11671-021-03513-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
9 Liang C, Zhang X, Wang Z, Wang W, Yang M, Dong X. Organic/inorganic nanohybrids rejuvenate photodynamic cancer therapy. J Mater Chem B 2020;8:4748-63. [PMID: 32129418 DOI: 10.1039/d0tb00098a] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 27.0] [Reference Citation Analysis]
10 Montaseri H, Kruger CA, Abrahamse H. Inorganic Nanoparticles Applied for Active Targeted Photodynamic Therapy of Breast Cancer. Pharmaceutics 2021;13:296. [PMID: 33668307 DOI: 10.3390/pharmaceutics13030296] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 27.0] [Reference Citation Analysis]
11 Han R, Wu S, Tang K, Hou Y. Facilitating drug release in mesoporous silica coated upconversion nanoparticles by photoacid assistance upon near-infrared irradiation. Advanced Powder Technology 2020;31:3860-6. [DOI: 10.1016/j.apt.2020.07.025] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
12 Li Z, Qiao X, He G, Sun X, Feng D, Hu L, Xu H, Xu H, Ma S, Tian J. Core-satellite metal-organic framework@upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics. Nano Res 2020;13:3377-86. [DOI: 10.1007/s12274-020-3025-0] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 14.0] [Reference Citation Analysis]
13 Wu X, Zhang Y, Wang Z, Wu J, Yan R, Guo C, Jin Y. Near-Infrared Light-Initiated Upconversion Nanoplatform with Tumor Microenvironment Responsiveness for Improved Photodynamic Therapy. ACS Appl Bio Mater 2020;3:5813-23. [DOI: 10.1021/acsabm.0c00545] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
14 Ovais M, Mukherjee S, Pramanik A, Das D, Mukherjee A, Raza A, Chen C. Designing Stimuli-Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment. Adv Mater 2020;32:e2000055. [PMID: 32227413 DOI: 10.1002/adma.202000055] [Cited by in Crossref: 79] [Cited by in F6Publishing: 82] [Article Influence: 39.5] [Reference Citation Analysis]
15 Gao Y, Sun S, Yin Z, Liu Y, Wu A, Zeng L. Cancer Theranostics of WhiteTiO2Nanomaterials. TiO2 Nanoparticles 2020. [DOI: 10.1002/9783527825431.ch5] [Reference Citation Analysis]
16 Li CY, Zheng B, Kang YF, Tang HW, Pang DW. Integrating 808 nm Light-Excited Upconversion Luminescence Powering with DNA Tetrahedron Protection: An Exceptionally Precise and Stable Nanomachine for Intracelluar MicroRNA Tracing. ACS Sens 2020;5:199-207. [PMID: 31833356 DOI: 10.1021/acssensors.9b02043] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
17 Wang J, Hu Y, Chen J, Ye C. Self-assembled CeVO 4 /Au heterojunction nanocrystals for photothermal/photoacoustic bimodal imaging-guided phototherapy. RSC Adv 2020;10:2581-8. [DOI: 10.1039/c9ra09860g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
18 Gao Y, Zhang L, Liu Y, Sun S, Yin Z, Zhang L, Li A, Lu G, Wu A, Zeng L. Ce6/Mn 2+ -chelated polydopamine@black-TiO 2 nanoprobes for enhanced synergistic phototherapy and magnetic resonance imaging in 4T1 breast cancer. Nanoscale 2020;12:1801-10. [DOI: 10.1039/c9nr09236f] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 14.5] [Reference Citation Analysis]
19 Kandasamy G, Kumar K. Synergy between nanoparticles and breast cancer theranostics. Nanomedicines for Breast Cancer Theranostics 2020. [DOI: 10.1016/b978-0-12-820016-2.00005-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Lin J, Ren W, Li A, Yao C, Chen T, Ma X, Wang X, Wu A. Crystal-Amorphous Core-Shell Structure Synergistically Enabling TiO2 Nanoparticles' Remarkable SERS Sensitivity for Cancer Cell Imaging. ACS Appl Mater Interfaces 2020;12:4204-11. [PMID: 31789506 DOI: 10.1021/acsami.9b17150] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
21 Liao P, Hu J, Wang H, Li J, Zhou Z. Recent advances in surface‐functionalised photosensitive antibacterials with synergistic effects. Biosurface and Biotribology 2019;5:97-103. [DOI: 10.1049/bsbt.2019.0005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
22 Chen L, Huang Y, Song L, Yin W, Hou L, Liu X, Chen T. Biofriendly and Regenerable Emotional Monitor from Interfacial Ultrathin 2D PDA/AuNPs Cross-linking Films. ACS Appl Mater Interfaces 2019;11:36259-69. [DOI: 10.1021/acsami.9b11918] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
23 Chen Y, Ren J, Tian D, Li Y, Jiang H, Zhu J. Polymer–Upconverting Nanoparticle Hybrid Micelles for Enhanced Synergistic Chemo–Photodynamic Therapy: Effects of Emission–Absorption Spectral Match. Biomacromolecules 2019;20:4044-52. [DOI: 10.1021/acs.biomac.9b01211] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
24 Liu J, Yang F, Feng M, Wang Y, Peng X, Lv R. Surface Plasmonic Enhanced Imaging-Guided Photothermal/Photodynamic Therapy Based on Lanthanide–Metal Nanocomposites under Single 808 nm Laser. ACS Biomater Sci Eng 2019;5:5051-9. [DOI: 10.1021/acsbiomaterials.9b01112] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
25 Dibaba ST, Xiaoqian Ge, Ren W, Sun L. Recent progress of energy transfer and luminescence intensity boosting mechanism in Nd3+-sensitized upconversion nanoparticles. Journal of Rare Earths 2019;37:791-805. [DOI: 10.1016/j.jre.2019.02.001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
26 Wang Y, Song S, Zhang S, Zhang H. Stimuli-responsive nanotheranostics based on lanthanide-doped upconversion nanoparticles for cancer imaging and therapy: current advances and future challenges. Nano Today 2019;25:38-67. [DOI: 10.1016/j.nantod.2019.02.007] [Cited by in Crossref: 71] [Cited by in F6Publishing: 54] [Article Influence: 23.7] [Reference Citation Analysis]
27 Wu X, Yang L, Luo L, Shi G, Wei X, Wang F. Engineered g-C 3 N 4 Quantum Dots for Tunable Two-Photon Imaging and Photodynamic Therapy. ACS Appl Bio Mater 2019;2:1998-2005. [DOI: 10.1021/acsabm.9b00055] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
28 Lin A, Li S, Xu C, Li X, Zheng B, Gu J, Ke M, Huang J. A pH-responsive stellate mesoporous silica based nanophotosensitizer for in vivo cancer diagnosis and targeted photodynamic therapy. Biomater Sci 2019;7:211-9. [DOI: 10.1039/c8bm00386f] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 9.7] [Reference Citation Analysis]
29 Lv R, Jiang X, Yang F, Wang Y, Feng M, Liu J, Tian J. Degradable magnetic-response photoacoustic/up-conversion luminescence imaging-guided photodynamic/photothermal antitumor therapy. Biomater Sci 2019;7:4558-67. [DOI: 10.1039/c9bm00853e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
30 Ravindran Girija A, Balasubramanian S. Theragnostic potentials of core/shell mesoporous silica nanostructures. Nanotheranostics 2019;3:1-40. [PMID: 30662821 DOI: 10.7150/ntno.27877] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
31 Yan X, Li T, Guo L, Li H, Chen P, Liu M. Multifunctional BiF 3 :Ln 3+ (Ln = Ho, Er, Tm)/Yb 3+ nanoparticles: an investigation on the emission color tuning, thermosensitivity, and bioimaging. RSC Adv 2019;9:10889-96. [DOI: 10.1039/c9ra01018a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
32 Yang M, Wang H, Wang Z, Han Z, Gu Y. A Nd 3+ sensitized upconversion nanosystem with dual photosensitizers for improving photodynamic therapy efficacy. Biomater Sci 2019;7:1686-95. [DOI: 10.1039/c8bm01570h] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
33 Li K, Hong E, Wang B, Wang Z, Zhang L, Hu R, Wang B. Advances in the application of upconversion nanoparticles for detecting and treating cancers. Photodiagnosis Photodyn Ther 2019;25:177-92. [PMID: 30579991 DOI: 10.1016/j.pdpdt.2018.12.007] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 8.8] [Reference Citation Analysis]
34 Wu X, Yan P, Ren Z, Wang Y, Cai X, Li X, Deng R, Han G. Ferric Hydroxide-Modified Upconversion Nanoparticles for 808 nm NIR-Triggered Synergetic Tumor Therapy with Hypoxia Modulation. ACS Appl Mater Interfaces 2019;11:385-93. [DOI: 10.1021/acsami.8b18427] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 8.0] [Reference Citation Analysis]
35 Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu J, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018;61:1503-52. [DOI: 10.1007/s11426-018-9397-5] [Cited by in Crossref: 279] [Cited by in F6Publishing: 227] [Article Influence: 69.8] [Reference Citation Analysis]
36 Lv R, Feng M, Parak WJ. Up-Conversion Luminescence Properties of Lanthanide-Gold Hybrid Nanoparticles as Analyzed with Discrete Dipole Approximation. Nanomaterials (Basel) 2018;8:E989. [PMID: 30501026 DOI: 10.3390/nano8120989] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
37 Wang S, Ren W, Wang J, Jiang Z, Saeed M, Zhang L, Li A, Wu A. Black TiO2-based nanoprobes for T1-weighted MRI-guided photothermal therapy in CD133 high expressed pancreatic cancer stem-like cells. Biomater Sci 2018;6:2209-18. [PMID: 29947365 DOI: 10.1039/c8bm00454d] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
38 Guan Q, Li Y, Li W, Dong Y. Photodynamic Therapy Based on Nanoscale Metal-Organic Frameworks: From Material Design to Cancer Nanotherapeutics. Chem Asian J 2018;13:3122-49. [DOI: 10.1002/asia.201801221] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 13.3] [Reference Citation Analysis]
39 Fang W, Wei Y, Ye Y, Zhang T, Xing D. Oxyhemoglobin-monitoring photodynamic theranostics with an 808 nm-excited upconversion optical nanoagent. Chemical Engineering Journal 2018;350:108-19. [DOI: 10.1016/j.cej.2018.05.156] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
40 Rodríguez-sevilla P, Labrador-páez L, Haro-gonzález P. Upconverting materials for boosting the development of advanced optical microrheometric techniques. Optical Materials 2018;84:514-23. [DOI: 10.1016/j.optmat.2018.07.058] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
41 Yang B, Chen Y, Shi J. Exogenous/Endogenous-Triggered Mesoporous Silica Cancer Nanomedicine. Adv Healthc Mater 2018;7:e1800268. [PMID: 29938917 DOI: 10.1002/adhm.201800268] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
42 Zhang C, Wu W, Li R, Qiu W, Zhuang Z, Cheng S, Zhang X. Peptide‐Based Multifunctional Nanomaterials for Tumor Imaging and Therapy. Adv Funct Mater 2018;28:1804492. [DOI: 10.1002/adfm.201804492] [Cited by in Crossref: 67] [Cited by in F6Publishing: 68] [Article Influence: 16.8] [Reference Citation Analysis]
43 Sun Q, He F, Sun C, Wang X, Li C, Xu J, Yang D, Bi H, Gai S, Yang P. Honeycomb-Satellite Structured pH/H 2 O 2 -Responsive Degradable Nanoplatform for Efficient Photodynamic Therapy and Multimodal Imaging. ACS Appl Mater Interfaces 2018;10:33901-12. [DOI: 10.1021/acsami.8b10207] [Cited by in Crossref: 66] [Cited by in F6Publishing: 71] [Article Influence: 16.5] [Reference Citation Analysis]
44 Kaczorowska N, Szczeszak A, Lis S. Synthesis and tunable emission studies of new up-converting Ba2GdV3O11 nanopowders doped with Yb3+/Ln3+ (Ln3+ = Er3+, Ho3+, Tm3+). Journal of Luminescence 2018;200:59-65. [DOI: 10.1016/j.jlumin.2018.03.085] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
45 Jiang Z, Tian Y, Shan D, Wang Y, Gerhard E, Xia J, Huang R, He Y, Li A, Tang J, Ruan H, Li Y, Li J, Yang J, Wu A. pH protective Y1 receptor ligand functionalized antiphagocytosis BPLP-WPU micelles for enhanced tumor imaging and therapy with prolonged survival time. Biomaterials 2018;170:70-81. [DOI: 10.1016/j.biomaterials.2018.04.002] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 9.8] [Reference Citation Analysis]
46 He S, Johnson NJJ, Nguyen Huu VA, Huang Y, Almutairi A. Leveraging Spectral Matching between Photosensitizers and Upconversion Nanoparticles for 808 nm-Activated Photodynamic Therapy. Chem Mater 2018;30:3991-4000. [DOI: 10.1021/acs.chemmater.7b04700] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 9.8] [Reference Citation Analysis]
47 Gong Q, Zou R, Xing J, Xiang L, Zhang R, Wu A. A Ultrasensitive Near-Infrared Fluorescent Probe Reveals Pyroglutamate Aminopeptidase 1 Can Be a New Inflammatory Cytokine. Adv Sci (Weinh) 2018;5:1700664. [PMID: 29721415 DOI: 10.1002/advs.201700664] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
48 Qiu S, Zeng J, Hou Y, Chen L, Ge J, Wen L, Liu C, Zhang Y, Zhu R, Gao M. Detection of lymph node metastasis with near-infrared upconversion luminescent nanoprobes. Nanoscale 2018;10:21772-81. [DOI: 10.1039/c8nr05811c] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
49 Liu J, Zhang T, Song X, Xing J. Enhanced red emission of 808 nm excited upconversion nanoparticles by optimizing the composition of shell for efficient generation of singlet oxygen. Optical Materials 2018;75:79-87. [DOI: 10.1016/j.optmat.2017.09.046] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
50 Xu J, Yang D, Han W, Dong S, Jia T, He F, Bi H, Gai S, Li L, Yang P. A novel strategy for markedly enhancing the red upconversion emission in Er 3+ /Tm 3+ cooperated nanoparticles. J Mater Chem C 2018;6:7533-40. [DOI: 10.1039/c8tc02370k] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
51 Labrador-páez L, Ximendes EC, Rodríguez-sevilla P, Ortgies DH, Rocha U, Jacinto C, Martín Rodríguez E, Haro-gonzález P, Jaque D. Core–shell rare-earth-doped nanostructures in biomedicine. Nanoscale 2018;10:12935-56. [DOI: 10.1039/c8nr02307g] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 12.8] [Reference Citation Analysis]
52 Wang Y, Cai D, Wu H, Fu Y, Cao Y, Zhang Y, Wu D, Tian Q, Yang S. Functionalized Cu 3 BiS 3 nanoparticles for dual-modal imaging and targeted photothermal/photodynamic therapy. Nanoscale 2018;10:4452-62. [DOI: 10.1039/c7nr07458a] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 10.3] [Reference Citation Analysis]
53 Yu Z, Xia Y, Xing J, Li Z, Zhen J, Jin Y, Tian Y, Liu C, Jiang Z, Li J, Wu A. Y 1 -receptor–ligand-functionalized ultrasmall upconversion nanoparticles for tumor-targeted trimodality imaging and photodynamic therapy with low toxicity. Nanoscale 2018;10:17038-52. [DOI: 10.1039/c8nr02387e] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 7.3] [Reference Citation Analysis]
54 Deng K, Li C, Huang S, Xing B, Jin D, Zeng Q, Hou Z, Lin J. Recent Progress in Near Infrared Light Triggered Photodynamic Therapy. Small 2017;13:1702299. [DOI: 10.1002/smll.201702299] [Cited by in Crossref: 181] [Cited by in F6Publishing: 189] [Article Influence: 36.2] [Reference Citation Analysis]
55 Ni W, Li M, Cui J, Xing Z, Li Z, Wu X, Song E, Gong M, Zhou W. 808nm light triggered black TiO2 nanoparticles for killing of bladder cancer cells. Mater Sci Eng C Mater Biol Appl 2017;81:252-60. [PMID: 28887971 DOI: 10.1016/j.msec.2017.08.020] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
56 Han R, Shi J, Liu Z, Wang H, Wang Y. Fabrication of Mesoporous-Silica-Coated Upconverting Nanoparticles with Ultrafast Photosensitizer Loading and 808 nm NIR-Light-Triggering Capability for Photodynamic Therapy. Chem Asian J 2017;12:2197-201. [PMID: 28675650 DOI: 10.1002/asia.201700836] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
57 Xu J, Gulzar A, Liu Y, Bi H, Gai S, Liu B, Yang D, He F, Yang P. Integration of IR‐808 Sensitized Upconversion Nanostructure and MoS 2 Nanosheet for 808 nm NIR Light Triggered Phototherapy and Bioimaging. Small 2017;13:1701841. [DOI: 10.1002/smll.201701841] [Cited by in Crossref: 94] [Cited by in F6Publishing: 99] [Article Influence: 18.8] [Reference Citation Analysis]
58 Chan M, Pan Y, Lee I, Chen C, Chan Y, Hsiao M, Wang F, Sun L, Chen X, Liu R. Minimizing the Heat Effect of Photodynamic Therapy Based on Inorganic Nanocomposites Mediated by 808 nm Near-Infrared Light. Small 2017;13:1700038. [DOI: 10.1002/smll.201700038] [Cited by in Crossref: 70] [Cited by in F6Publishing: 75] [Article Influence: 14.0] [Reference Citation Analysis]
59 Liu B, Li C, Yang P, Hou Z, Lin J. 808-nm-Light-Excited Lanthanide-Doped Nanoparticles: Rational Design, Luminescence Control and Theranostic Applications. Adv Mater 2017;29. [PMID: 28295673 DOI: 10.1002/adma.201605434] [Cited by in Crossref: 198] [Cited by in F6Publishing: 200] [Article Influence: 39.6] [Reference Citation Analysis]
60 Xu J, Yang P, Sun M, Bi H, Liu B, Yang D, Gai S, He F, Lin J. Highly Emissive Dye-Sensitized Upconversion Nanostructure for Dual-Photosensitizer Photodynamic Therapy and Bioimaging. ACS Nano 2017;11:4133-44. [PMID: 28320205 DOI: 10.1021/acsnano.7b00944] [Cited by in Crossref: 275] [Cited by in F6Publishing: 289] [Article Influence: 55.0] [Reference Citation Analysis]
61 Feng Y, Chen H, Ma L, Shao B, Zhao S, Wang Z, You H. Surfactant-Free Aqueous Synthesis of Novel Ba 2 GdF 7 :Yb 3+ , Er 3+ @PEG Upconversion Nanoparticles for in Vivo Trimodality Imaging. ACS Appl Mater Interfaces 2017;9:15096-102. [DOI: 10.1021/acsami.7b03411] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 5.4] [Reference Citation Analysis]
62 Cheng Y, Chang Y, Feng Y, Liu N, Sun X, Feng Y, Li X, Zhang H. Simulated Sunlight-Mediated Photodynamic Therapy for Melanoma Skin Cancer by Titanium-Dioxide-Nanoparticle-Gold-Nanocluster-Graphene Heterogeneous Nanocomposites. Small 2017;13:1603935. [DOI: 10.1002/smll.201603935] [Cited by in Crossref: 60] [Cited by in F6Publishing: 60] [Article Influence: 12.0] [Reference Citation Analysis]
63 Zhang Y, Yu Z, Li J, Ao Y, Xue J, Zeng Z, Yang X, Tan TT. Ultrasmall-Superbright Neodymium-Upconversion Nanoparticles via Energy Migration Manipulation and Lattice Modification: 808 nm-Activated Drug Release. ACS Nano 2017;11:2846-57. [PMID: 28221761 DOI: 10.1021/acsnano.6b07958] [Cited by in Crossref: 84] [Cited by in F6Publishing: 85] [Article Influence: 16.8] [Reference Citation Analysis]
64 Huang H, Lovell JF. Advanced Functional Nanomaterials for Theranostics. Adv Funct Mater 2017;27:1603524. [PMID: 28824357 DOI: 10.1002/adfm.201603524] [Cited by in Crossref: 156] [Cited by in F6Publishing: 163] [Article Influence: 31.2] [Reference Citation Analysis]
65 Xu J, Sun M, Kuang Y, Bi H, Liu B, Yang D, Lv R, Gai S, He F, Yang P. Markedly enhanced up-conversion luminescence by combining IR-808 dye sensitization and core–shell–shell structures. Dalton Trans 2017;46:1495-501. [DOI: 10.1039/c6dt04529d] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
66 Hemmer E, Acosta-mora P, Méndez-ramos J, Fischer S. Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy. J Mater Chem B 2017;5:4365-92. [DOI: 10.1039/c7tb00403f] [Cited by in Crossref: 148] [Cited by in F6Publishing: 150] [Article Influence: 29.6] [Reference Citation Analysis]
67 Lin M, Liu S, Wang D, Li S, Zhang X, Ge R, Li X, Liu Y, Song W, Sun H, Zhang H, Yang B. Electrostatic attraction driven and shuttle-like morphology assisted enhancement for tumor uptake. RSC Adv 2017;7:56621-8. [DOI: 10.1039/c7ra10970a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
68 Ren W, Iqbal MZ, Zeng L, Chen T, Pan Y, Zhao J, Yin H, Zhang L, Zhang J, Li A, Wu A. Black TiO 2 based core–shell nanocomposites as doxorubicin carriers for thermal imaging guided synergistic therapy of breast cancer. Nanoscale 2017;9:11195-204. [DOI: 10.1039/c7nr04039c] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 8.0] [Reference Citation Analysis]