BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chaves VE, Frasson D, Kawashita NH. Several agents and pathways regulate lipolysis in adipocytes. Biochimie 2011;93:1631-40. [PMID: 21658426 DOI: 10.1016/j.biochi.2011.05.018] [Cited by in Crossref: 76] [Cited by in F6Publishing: 67] [Article Influence: 6.9] [Reference Citation Analysis]
Number Citing Articles
1 Chen C, Chuang W, Lin A, Tsai C, Huang C, Chen Y, Chen H, Lii C. Andrographolide inhibits adipogenesis of 3T3-L1 cells by suppressing C/EBPβ expression and activation. Toxicology and Applied Pharmacology 2016;307:115-22. [DOI: 10.1016/j.taap.2016.07.021] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
2 Chaves VE, Júnior FM, Bertolini GL. The metabolic effects of growth hormone in adipose tissue. Endocrine 2013;44:293-302. [PMID: 23430368 DOI: 10.1007/s12020-013-9904-3] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
3 Zhang X, Wang Z, Li J, Gu D, Li S, Shen C, Song Z. Increased 4-hydroxynonenal formation contributes to obesity-related lipolytic activation in adipocytes. PLoS One. 2013;8:e70663. [PMID: 23940618 DOI: 10.1371/journal.pone.0070663] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 4.0] [Reference Citation Analysis]
4 Bergan-Roller HE, Sheridan MA. The growth hormone signaling system: Insights into coordinating the anabolic and catabolic actions of growth hormone. Gen Comp Endocrinol. 2018;258:119-133. [PMID: 28760716 DOI: 10.1016/j.ygcen.2017.07.028] [Cited by in Crossref: 65] [Cited by in F6Publishing: 54] [Article Influence: 13.0] [Reference Citation Analysis]
5 Kang S, Shin H, Ko H, Kim S. Effects of Sinensetin on Lipid Metabolism in Mature 3T3-L1 Adipocytes: SINENSETIN ACTIVATES AMP-ACTIVATED PROTEIN KINASE. Phytother Res 2013;27:131-4. [DOI: 10.1002/ptr.4683] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
6 Cozer AG, Trapp M, Vieira Marques C, Martins TL, Model JF, Schein V, Kucharski LC, Da Silva RS. Stanniocalcin 1 Enhances Carbon Flux from Glucose to Lipids in White Retroperitoneal Adipose Tissue in the Fed Rat. Lipids 2016;51:1303-7. [PMID: 27730346 DOI: 10.1007/s11745-016-4202-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
7 Walker CS, Hay DL, Fitzpatrick SM, Cooper GJ, Loomes KM. α-Calcitonin gene related peptide (α-CGRP) mediated lipid mobilization in 3T3-L1 adipocytes. Peptides 2014;58:14-9. [PMID: 24887115 DOI: 10.1016/j.peptides.2014.05.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
8 Viscarra JA, Vázquez-Medina JP, Rodriguez R, Champagne CD, Adams SH, Crocker DE, Ortiz RM. Decreased expression of adipose CD36 and FATP1 are associated with increased plasma non-esterified fatty acids during prolonged fasting in northern elephant seal pups (Mirounga angustirostris). J Exp Biol 2012;215:2455-64. [PMID: 22723485 DOI: 10.1242/jeb.069070] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.4] [Reference Citation Analysis]
9 Zhu X, Yang L, Xu F, Lin L, Zheng G. Combination therapy with catechins and caffeine inhibits fat accumulation in 3T3-L1 cells. Exp Ther Med 2017;13:688-94. [PMID: 28352352 DOI: 10.3892/etm.2016.3975] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
10 Kimura T, Pydi SP, Wang L, Haspula D, Cui Y, Lu H, König GM, Kostenis E, Steinberg GR, Gavrilova O, Wess J. Adipocyte Gq signaling is a regulator of glucose and lipid homeostasis in mice. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-29231-6] [Reference Citation Analysis]
11 Chen J, Ma X, Yang Y, Dai Z, Wu Z, Wu G. Glycine enhances expression of adiponectin and IL-10 in 3T3-L1 adipocytes without affecting adipogenesis and lipolysis. Amino Acids 2018;50:629-40. [DOI: 10.1007/s00726-018-2537-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
12 Engeli S, Lehmann A, Kaminski J, Haas V, Janke J, Zoerner AA, Luft FC, Tsikas D, Jordan J. Influence of dietary fat intake on the endocannabinoid system in lean and obese subjects: Endocannabinoids and High-Fat Diet. Obesity 2014;22:E70-6. [DOI: 10.1002/oby.20728] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
13 Heimann E, Nyman M, Degerman E. Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes. Adipocyte 2015;4:81-8. [PMID: 26167409 DOI: 10.4161/21623945.2014.960694] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 5.1] [Reference Citation Analysis]
14 Li Y, Peng M, Zeng T, Zheng J, Liao Y, Zhang H, Yang S, Chen L. Protein Arginine Methyltransferase 4 Regulates Adipose Tissue Lipolysis in Type 1 Diabetic Mice. Diabetes Metab Syndr Obes 2020;13:535-44. [PMID: 32161480 DOI: 10.2147/DMSO.S235869] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
15 Corbould A, Bhathal PS, Dixon JB, O'brien PE. Interrelationships of Serum Androgens, Omental Adipose Tissue Metabolism, and Nonalcoholic Fatty Liver Disease in Obese Premenopausal Women. Metabolic Syndrome and Related Disorders 2014;12:311-9. [DOI: 10.1089/met.2013.0105] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
16 Hesse D, Jaschke A, Chung B, Schürmann A. Trans-Golgi proteins participate in the control of lipid droplet and chylomicron formation. Biosci Rep 2013;33:1-9. [PMID: 23033902 DOI: 10.1042/BSR20120082] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
17 Nimako C, Ikenaka Y, Okamatsu-Ogura Y, Bariuan JV, Kobayashi A, Yamazaki R, Taira K, Hoshi N, Hirano T, Nakayama SMM, Ishizuka M. Chronic low-dose exposure to imidacloprid potentiates high fat diet-mediated liver steatosis in C57BL/6J male mice. J Vet Med Sci 2021;83:487-500. [PMID: 33487623 DOI: 10.1292/jvms.20-0479] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Alinejad B, Shafiee-nick R, Ghorbani A, Sadeghian H. MC2, a new phosphodiesterase-3 inhibitor with antilipolytic and hypolipidemic effects in normal and diabetic rats. Int J Diabetes Dev Ctries 2015;35:408-17. [DOI: 10.1007/s13410-015-0291-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
19 Jeong HY, Yun HJ, Kim BW, Lee EW, Kwon HJ. Widdrol-induced lipolysis is mediated by PKC and MEK/ERK in 3T3-L1 adipocytes. Mol Cell Biochem 2015;410:247-54. [DOI: 10.1007/s11010-015-2558-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
20 Kim KK, Kim TW, Kang YH, Kim DJ, Choe M. Lipid-lowering effects of Zanthoxylum schinifolium Siebold & Zucc. seed oil (ZSO) in hyperlipidemic rats and lipolytic effects in 3T3-L1 adipocytes. Food Sci Biotechnol 2016;25:1427-36. [PMID: 30263426 DOI: 10.1007/s10068-016-0222-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
21 Gwóźdź K, Szkudelski T, Szkudelska K. Characteristics of metabolic changes in adipocytes of growing rats. Biochimie 2016;125:195-203. [PMID: 27060433 DOI: 10.1016/j.biochi.2016.04.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
22 Zingg JM, Hasan ST, Meydani M. Molecular mechanisms of hypolipidemic effects of curcumin. Biofactors. 2013;39:101-121. [PMID: 23339042 DOI: 10.1002/biof.1072] [Cited by in Crossref: 95] [Cited by in F6Publishing: 92] [Article Influence: 10.6] [Reference Citation Analysis]
23 Sosa-Madrid BS, Hernández P, Blasco A, Haley CS, Fontanesi L, Santacreu MA, Pena RN, Navarro P, Ibáñez-Escriche N. Genomic regions influencing intramuscular fat in divergently selected rabbit lines. Anim Genet 2020;51:58-69. [PMID: 31696970 DOI: 10.1111/age.12873] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
24 Leiva A, Guzmán-gutiérrez E, Contreras-duarte S, Fuenzalida B, Cantin C, Carvajal L, Salsoso R, Gutiérrez J, Pardo F, Sobrevia L. Adenosine receptors: Modulators of lipid availability that are controlled by lipid levels. Molecular Aspects of Medicine 2017;55:26-44. [DOI: 10.1016/j.mam.2017.01.007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
25 López-Yoldi M, Fernández-Galilea M, Laiglesia LM, Larequi E, Prieto J, Martínez JA, Bustos M, Moreno-Aliaga MJ. Cardiotrophin-1 stimulates lipolysis through the regulation of main adipose tissue lipases. J Lipid Res 2014;55:2634-43. [PMID: 25351614 DOI: 10.1194/jlr.M055335] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
26 Zhu E, Yang Y, Zhang J, Li Y, Li C, Chen L, Sun B. Liraglutide suppresses obesity and induces brown fat-like phenotype via Soluble Guanylyl Cyclase mediated pathway in vivo and in vitro. Oncotarget 2016;7:81077-89. [PMID: 27835589 DOI: 10.18632/oncotarget.13189] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
27 Briançon-Marjollet A, Monneret D, Henri M, Hazane-Puch F, Pepin JL, Faure P, Godin-Ribuot D. Endothelin regulates intermittent hypoxia-induced lipolytic remodelling of adipose tissue and phosphorylation of hormone-sensitive lipase. J Physiol 2016;594:1727-40. [PMID: 26663321 DOI: 10.1113/JP271321] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
28 Nielsen TS, Kampmann U, Nielsen RR, Jessen N, Orskov L, Pedersen SB, Jørgensen JO, Lund S, Møller N. Reduced mRNA and protein expression of perilipin A and G0/G1 switch gene 2 (G0S2) in human adipose tissue in poorly controlled type 2 diabetes. J Clin Endocrinol Metab 2012;97:E1348-52. [PMID: 22535977 DOI: 10.1210/jc.2012-1159] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.1] [Reference Citation Analysis]
29 Lima WG, Marques-oliveira GH, da Silva TM, Chaves VE. Role of calcitonin gene-related peptide in energy metabolism. Endocrine 2017;58:3-13. [DOI: 10.1007/s12020-017-1404-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
30 Liu CP, Chau PC, Chang CT, An LM, Yeh JL, Chen IJ, Wu BN. KMUP-1, a GPCR Modulator, Attenuates Triglyceride Accumulation Involved MAPKs/Akt/PPARγ and PKA/PKG/HSL Signaling in 3T3-L1 Preadipocytes. Molecules 2018;23:E2433. [PMID: 30249030 DOI: 10.3390/molecules23102433] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
31 Ying H, Zang J, Deng L, Wang Z, Yu C. Pentamethylquercetin reduces fat deposition via Sirt1-mediated pathways in male obese mice induced by a high fat diet. Food and Chemical Toxicology 2013;62:463-9. [DOI: 10.1016/j.fct.2013.09.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
32 Ceddia RP, Lee D, Maulis MF, Carboneau BA, Threadgill DW, Poffenberger G, Milne G, Boyd KL, Powers AC, McGuinness OP, Gannon M, Breyer RM. The PGE2 EP3 Receptor Regulates Diet-Induced Adiposity in Male Mice. Endocrinology 2016;157:220-32. [PMID: 26485614 DOI: 10.1210/en.2015-1693] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
33 Faylon M, Koltes D, Spurlock D. Regulation of lipid droplet-associated proteins following growth hormone administration and feed restriction in lactating Holstein cows. Journal of Dairy Science 2014;97:2847-55. [DOI: 10.3168/jds.2013-7565] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
34 de Melo AF, Moreira CCL, Sales CF, Rentz T, Raposo HF, Garófalo MAR, Botion LM, Kettelhut IDC, de Oliveira HCF, Chaves VE. Increase in liver cytosolic lipases activities and VLDL-TAG secretion rate do not prevent the non-alcoholic fatty liver disease in cafeteria diet-fed rats. Biochimie 2018;150:16-22. [DOI: 10.1016/j.biochi.2018.04.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
35 Kanagasabapathy G, Chua K, Malek S, Vikineswary S, Kuppusamy U. AMP-activated protein kinase mediates insulin-like and lipo-mobilising effects of β-glucan-rich polysaccharides isolated from Pleurotus sajor-caju (Fr.), Singer mushroom, in 3T3-L1 cells. Food Chemistry 2014;145:198-204. [DOI: 10.1016/j.foodchem.2013.08.051] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 3.6] [Reference Citation Analysis]
36 Jaubert AM, Penot G, Niang F, Durant S, Forest C. Rapid nitration of adipocyte phosphoenolpyruvate carboxykinase by leptin reduces glyceroneogenesis and induces fatty acid release. PLoS One 2012;7:e40650. [PMID: 22808220 DOI: 10.1371/journal.pone.0040650] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
37 Moreira CCL, Lourenço FC, Mario ÉG, Santos RAS, Botion LM, Chaves VE. Long-term effects of angiotensin-(1-7) on lipid metabolism in the adipose tissue and liver. Peptides 2017;92:16-22. [PMID: 28438644 DOI: 10.1016/j.peptides.2017.04.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
38 Han van der Kolk JH, Gross JJ, Gerber V, Bruckmaier RM. Disturbed bovine mitochondrial lipid metabolism: a review. Vet Q 2017;37:262-73. [PMID: 28712316 DOI: 10.1080/01652176.2017.1354561] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
39 Amisten S, Neville M, Hawkes R, Persaud SJ, Karpe F, Salehi A. An atlas of G-protein coupled receptor expression and function in human subcutaneous adipose tissue. Pharmacology & Therapeutics 2015;146:61-93. [DOI: 10.1016/j.pharmthera.2014.09.007] [Cited by in Crossref: 46] [Cited by in F6Publishing: 35] [Article Influence: 6.6] [Reference Citation Analysis]
40 Zhang F, Zhao S, Yan W, Xia Y, Chen X, Wang W, Zhang J, Gao C, Peng C, Yan F, Zhao H, Lian K, Lee Y, Zhang L, Lau WB, Ma X, Tao L. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy. EBioMedicine. 2016;13:157-167. [PMID: 27843095 DOI: 10.1016/j.ebiom.2016.10.013] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 9.2] [Reference Citation Analysis]
41 Bergan HE, Kittilson JD, Sheridan MA. PKC and ERK mediate GH-stimulated lipolysis. Journal of Molecular Endocrinology 2013;51:213-24. [DOI: 10.1530/jme-13-0039] [Cited by in Crossref: 33] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
42 Santana A, Santamarina A, Souza G, Mennitti L, Okuda M, Venancio D, Seelaender M, Oller do Nascimento C, Ribeiro E, Lira F, Oyama L. Decaffeinated green tea extract rich in epigallocatechin-3-gallate improves insulin resistance and metabolic profiles in normolipidic diet—but not high-fat diet-fed mice. The Journal of Nutritional Biochemistry 2015;26:893-902. [DOI: 10.1016/j.jnutbio.2015.03.001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
43 Assinder SJ, Boumelhem BB. Oxytocin stimulates lipolysis, prostaglandin E2 synthesis, and leptin secretion in 3T3-L1 adipocytes. Mol Cell Endocrinol 2021;534:111381. [PMID: 34216640 DOI: 10.1016/j.mce.2021.111381] [Reference Citation Analysis]
44 Buzelle SL, Przygodda F, Rossi-Valentim R, Ferreira GN, Garófalo MAR, Alves VM, Chaves VE, Navegantes LCC, Kettelhut IDC. Activation of adipose tissue glycerokinase contributes to increased white adipose tissue mass in mice fed a high-fat diet. Endocrine 2020;69:79-91. [PMID: 32297203 DOI: 10.1007/s12020-020-02288-3] [Reference Citation Analysis]
45 Rodrigues AR, Almeida H, Gouveia AM. Alpha-MSH signalling via melanocortin 5 receptor promotes lipolysis and impairs re-esterification in adipocytes. Biochim Biophys Acta 2013;1831:1267-75. [PMID: 24046867 DOI: 10.1016/j.bbalip.2013.04.008] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
46 Hong SM, Ko JK, Moon JJ, Kim YR. Oxytocin: A Potential Therapeutic for Obesity. J Obes Metab Syndr 2021;30:115-23. [PMID: 33820878 DOI: 10.7570/jomes20098] [Reference Citation Analysis]
47 Badoiu SC, Miricescu D, Stanescu-Spinu II, Ripszky Totan A, Badoiu SE, Costagliola M, Greabu M. Glucose Metabolism in Burns-What Happens? Int J Mol Sci 2021;22:5159. [PMID: 34068151 DOI: 10.3390/ijms22105159] [Reference Citation Analysis]
48 Laforenza U, Bottino C, Gastaldi G. Mammalian aquaglyceroporin function in metabolism. Biochim Biophys Acta 2016;1858:1-11. [PMID: 26456554 DOI: 10.1016/j.bbamem.2015.10.004] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 5.6] [Reference Citation Analysis]
49 Zerradi M, Dereumetz J, Boulet M, Tchernof A. Androgens, body fat Distribution and Adipogenesis. Curr Obes Rep 2014;3:396-403. [DOI: 10.1007/s13679-014-0119-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
50 Dettori ML, Pazzola M, Pira E, Stocco G, Vacca GM. Association between the GHR, GHRHR and IGF1 gene polymorphisms and milk coagulation properties in Sarda sheep. J Dairy Res 2019;86:331-6. [PMID: 31288873 DOI: 10.1017/S0022029919000475] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
51 Chaves VE, Tilelli CQ, Brito NA, Brito MN. Role of oxytocin in energy metabolism. Peptides 2013;45:9-14. [DOI: 10.1016/j.peptides.2013.04.010] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 5.8] [Reference Citation Analysis]
52 Rodrigues AH, Moreira CCL, Mario ÉG, de Souza Cordeiro LM, Avelar GF, Botion LM, Chaves VE. Differential modulation of cytosolic lipases activities in liver and adipose tissue by high-carbohydrate diets. Endocrine 2016;53:423-32. [DOI: 10.1007/s12020-016-0886-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
53 Tchernof A, Brochu D, Maltais‐payette I, Mansour MF, Marchand GB, Carreau A, Kapeluto J. Androgens and the Regulation of Adiposity and Body Fat Distribution in Humans. In: Terjung R, editor. Comprehensive Physiology. Wiley; 2011. pp. 1253-90. [DOI: 10.1002/cphy.c170009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
54 Kang YH, Kim KK, Kim DJ, Choe M. Antiobesity effects of the water-soluble fraction of the ethanol extract of Smilax china L. leaf in 3T3-L1 adipocytes. Nutr Res Pract 2015;9:606-12. [PMID: 26634049 DOI: 10.4162/nrp.2015.9.6.606] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
55 Feres DD, Dos Santos MP, Buzelle SL, Pereira MP, de França SA, Garófalo MA, Andrade CM, Froelich M, de Almeida FJ, Frasson D, Chaves VE, Kawashita NH. In vitro TNF-α- and noradrenaline-stimulated lipolysis is impaired in adipocytes from growing rats fed a low-protein, high-carbohydrate diet. Lipids 2013;48:779-86. [PMID: 23794137 DOI: 10.1007/s11745-013-3809-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
56 Mullins GR, Wang L, Raje V, Sherwood SG, Grande RC, Boroda S, Eaton JM, Blancquaert S, Roger PP, Leitinger N, Harris TE. Catecholamine-induced lipolysis causes mTOR complex dissociation and inhibits glucose uptake in adipocytes. Proc Natl Acad Sci U S A 2014;111:17450-5. [PMID: 25422441 DOI: 10.1073/pnas.1410530111] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 5.0] [Reference Citation Analysis]
57 Bijland S, Mancini SJ, Salt IP. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin Sci (Lond). 2013;124:491-507. [PMID: 23298225 DOI: 10.1042/cs20120536] [Cited by in Crossref: 174] [Cited by in F6Publishing: 80] [Article Influence: 19.3] [Reference Citation Analysis]
58 Smolič T, Tavčar P, Horvat A, Černe U, Halužan Vasle A, Tratnjek L, Kreft ME, Scholz N, Matis M, Petan T, Zorec R, Vardjan N. Astrocytes in stress accumulate lipid droplets. Glia 2021;69:1540-62. [PMID: 33609060 DOI: 10.1002/glia.23978] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
59 Lu J, cheng B, Fang B, Meng Z, Zheng Y, Tian X, Guan S. Protective effects of allicin on 1,3-DCP-induced lipid metabolism disorder in HepG2 cells. Biomedicine & Pharmacotherapy 2017;96:1411-7. [DOI: 10.1016/j.biopha.2017.10.125] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
60 Alinejad B, Shafiee-Nick R, Sadeghian H, Ghorbani A. Metabolic effects of newly synthesized phosphodiesterase-3 inhibitor 6-[4-(4-methylpiperidin-1-yl)-4-oxobutoxy]-4-methylquinolin-2(1H)-one on rat adipocytes. Daru 2015;23:19. [PMID: 25880831 DOI: 10.1186/s40199-015-0100-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
61 Ahmad B, Friar EP, Vohra MS, Garrett MD, Serpell CJ, Fong IL, Wong EH. Mechanisms of action for the anti-obesogenic activities of phytochemicals. Phytochemistry 2020;180:112513. [PMID: 33010536 DOI: 10.1016/j.phytochem.2020.112513] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
62 Marques-oliveira GH, Silva TM, Lima WG, Valadares HMS, Chaves VE. Insulin as a hormone regulator of the synthesis and release of leptin by white adipose tissue. Peptides 2018;106:49-58. [DOI: 10.1016/j.peptides.2018.06.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
63 Louis C, Van den Daelen C, Tinant G, Bourez S, Thomé JP, Donnay I, Larondelle Y, Debier C. Efficient in vitro adipocyte model of long-term lipolysis: a tool to study the behavior of lipophilic compounds. In Vitro Cell Dev Biol Anim 2014;50:507-18. [PMID: 24477563 DOI: 10.1007/s11626-014-9733-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
64 Luglio HF, Sulistyoningrum DC, Susilowati R. The role of genes involved in lipolysis on weight loss program in overweight and obese individuals. J Clin Biochem Nutr 2015;57:91-7. [PMID: 26388665 DOI: 10.3164/jcbn.14-117] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
65 Liu Y, Chen X, Qu Y, Song L, Lin Q, Li M, Su K, Li Y, Dong J. Central nesfatin‐1 activates lipid mobilization in adipose tissue and fatty acid oxidation in muscle via the sympathetic nervous system. BioFactors 2020;46:454-64. [DOI: 10.1002/biof.1600] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
66 Schmitz-Peiffer C. The tail wagging the dog--regulation of lipid metabolism by protein kinase C. FEBS J. 2013;280:5371-5383. [PMID: 23587021 DOI: 10.1111/febs.12285] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 2.9] [Reference Citation Analysis]
67 Zhang X, Heckmann BL, Liu J. Studying lipolysis in adipocytes by combining siRNA knockdown and adenovirus-mediated overexpression approaches. Methods Cell Biol 2013;116:83-105. [PMID: 24099289 DOI: 10.1016/B978-0-12-408051-5.00006-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
68 Norman-Burgdolf H, Li D, Sullivan P, Wang S. CD47 differentially regulates white and brown fat function. Biol Open 2020;9:bio056747. [PMID: 33328190 DOI: 10.1242/bio.056747] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
69 Xu D, Yin C, Wang S, Xiao Y. JAK-STAT in lipid metabolism of adipocytes. JAKSTAT 2013;2:e27203. [PMID: 24498541 DOI: 10.4161/jkst.27203] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 2.0] [Reference Citation Analysis]
70 Ishizu LY, Borghi F, Conceição-vertamatti AG, Costa GT, Ramos LA, Área MA, Grassi-kassisse DM. Increased sympathetic tone and hypothalamic–pituitary–adrenal (HPA) axis activation impact in metabolic parameters from hypertensive rats. Endocrine and Metabolic Science 2021;5:100112. [DOI: 10.1016/j.endmts.2021.100112] [Reference Citation Analysis]