BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mei H, Cai S, Huang D, Gao H, Cao J, He B. Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification. Bioact Mater 2022;8:220-40. [PMID: 34541398 DOI: 10.1016/j.bioactmat.2021.06.035] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 37.0] [Reference Citation Analysis]
Number Citing Articles
1 Liwinska W, Waleka-Bagiel E, Stojek Z, Karbarz M, Zabost E. Enzyme-triggered- and tumor-targeted delivery with tunable, methacrylated poly(ethylene glycols) and hyaluronic acid hybrid nanogels. Drug Deliv 2022;29:2561-78. [PMID: 35938558 DOI: 10.1080/10717544.2022.2105443] [Reference Citation Analysis]
2 Mohamed MA, Yan L, Shahini A, Rajabian N, Jafari A, Andreadis ST, Wu Y, Cheng C. Well-Defined pH-Responsive Self-Assembled Block Copolymers for the Effective Codelivery of Doxorubicin and Antisense Oligonucleotide to Breast Cancer Cells. ACS Appl Bio Mater 2022. [PMID: 36170623 DOI: 10.1021/acsabm.2c00464] [Reference Citation Analysis]
3 De Marco I. Supercritical Fluids and Nanoparticles in Cancer Therapy. Micromachines 2022;13:1449. [DOI: 10.3390/mi13091449] [Reference Citation Analysis]
4 Waheed S, Li Z, Zhang F, Chiarini A, Armato U, Wu J. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. J Nanobiotechnology 2022;20:395. [PMID: 36045386 DOI: 10.1186/s12951-022-01605-4] [Reference Citation Analysis]
5 Figueiras A, Domingues C, Jarak I, Santos AI, Parra A, Pais A, Alvarez-lorenzo C, Concheiro A, Kabanov A, Cabral H, Veiga F. New Advances in Biomedical Application of Polymeric Micelles. Pharmaceutics 2022;14:1700. [DOI: 10.3390/pharmaceutics14081700] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Zuo S, Wang J, An X, Wang Z, Zheng X, Zhang Y. Fabrication of Ginsenoside-Based Nanodrugs for Enhanced Antitumor Efficacy on Triple-Negative Breast Cancer. Front Bioeng Biotechnol 2022;10:945472. [DOI: 10.3389/fbioe.2022.945472] [Reference Citation Analysis]
7 Yan T, Wang H, Song X, Yan T, Ding Y, Luo K, Zhen J, He G, Nian L, Wang S, Wang Z. Fabrication of apigenin nanoparticles using antisolvent crystallization technology: A comparison of supercritical antisolvent, ultrasonic-assisted liquid antisolvent, and high-pressure homogenization technologies. International Journal of Pharmaceutics 2022;624:121981. [DOI: 10.1016/j.ijpharm.2022.121981] [Reference Citation Analysis]
8 Goharshadi EK, Goharshadi K, Moghayedi M. The use of nanotechnology in the fight against viruses: A critical review. Coordination Chemistry Reviews 2022;464:214559. [DOI: 10.1016/j.ccr.2022.214559] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Gleason JM, Klass SH, Huang P, Ozawa T, Santos RA, Fogarty MM, Raleigh DR, Berger MS, Francis MB. Intrinsically Disordered Protein Micelles as Vehicles for Convection-Enhanced Drug Delivery to Glioblastoma Multiforme. ACS Appl Bio Mater 2022. [PMID: 35857070 DOI: 10.1021/acsabm.2c00215] [Reference Citation Analysis]
10 Szabó R, Rácz CP, Dulf FV. Bioavailability Improvement Strategies for Icariin and Its Derivates: A Review. IJMS 2022;23:7519. [DOI: 10.3390/ijms23147519] [Reference Citation Analysis]
11 Deng F, Liu Y, Zheng R, Kong R, Zhou X, Wang J, Cheng H, Li S. Ce6- and Bez235-Based Nanomedicine for Chemo-/Photodynamic Combination Therapy of Tumors. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c01384] [Reference Citation Analysis]
12 He Z, Wang Q, Zhang N, Yan J, Li L, Cao J, He B. Gold nanorods/tetrahedral DNA composites for chemo-photothermal therapy. Regen Biomater 2022;9:rbac032. [PMID: 35668924 DOI: 10.1093/rb/rbac032] [Reference Citation Analysis]
13 Xiang X, Feng X, Lu S, Jiang B, Hao D, Pei Q, Xie Z, Jing X. Indocyanine green potentiated paclitaxel nanoprodrugs for imaging and chemotherapy. Exploration. [DOI: 10.1002/exp.20220008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Li Z, Lai X, Fu S, Ren L, Cai H, Zhang H, Gu Z, Ma X, Luo K. Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency. Adv Sci (Weinh) 2022;:e2201734. [PMID: 35652198 DOI: 10.1002/advs.202201734] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
15 Shang Q, Dong Y, Su Y, Leslie F, Sun M, Wang F. Local scaffold-assisted delivery of immunotherapeutic agents for improved cancer immunotherapy. Adv Drug Deliv Rev 2022;185:114308. [PMID: 35472398 DOI: 10.1016/j.addr.2022.114308] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Cao H, Yang L, Tian R, Wu H, Gu Z, Li Y. Versatile polyphenolic platforms in regulating cell biology. Chem Soc Rev 2022. [PMID: 35535743 DOI: 10.1039/d1cs01165k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
17 Yang R, Wang L, Wu Z, Yin Y, Jiang SW. How Nanotechniques Could Vitalize the O-GlcNAcylation-Targeting Approach for Cancer Therapy. Int J Nanomedicine 2022;17:1829-41. [PMID: 35498390 DOI: 10.2147/IJN.S360488] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Liu R, Luo C, Pang Z, Zhang J, Ruan S, Wu M, Wang L, Sun T, Li N, Han L, Shi J, Huang Y, Guo W, Peng S, Zhou W, Gao H. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.05.032] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
19 Ming H, Li B, Tian H, Zhou L, Jiang J, Zhang T, Qiao L, Wu P, Nice EC, Zhang W, He W, Huang C, Zhang H. A minimalist and robust chemo-photothermal nanoplatform capable of augmenting autophagy-modulated immune response against breast cancer. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100289] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Shi R, Fan H, Yu X, Tang Y, Jiang J, Liang X. Advances of podophyllotoxin and its derivatives: patterns and mechanisms. Biochemical Pharmacology 2022. [DOI: 10.1016/j.bcp.2022.115039] [Reference Citation Analysis]
21 Kyu Shim M, Yang S, Sun IC, Kim K. Tumor-activated carrier-free prodrug nanoparticles for targeted cancer Immunotherapy: Preclinical evidence for safe and effective drug delivery. Adv Drug Deliv Rev 2022;183:114177. [PMID: 35245568 DOI: 10.1016/j.addr.2022.114177] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 12.0] [Reference Citation Analysis]
22 Wang C, Yu H, Yang X, Zhang X, Wang Y, Gu T, Zhang S, Luo C. Elaborately Engineering of a Dual-Drug Co-Assembled Nanomedicine for Boosting Immunogenic Cell Death and Enhancing Triple Negative Breast Cancer Treatment. Asian Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.ajps.2022.02.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Jia W, Liu R, Wang Y, Hu C, Yu W, Zhou Y, Wang L, Zhang M, Gao H, Gao X. Dual-responsive nanoparticles with transformable shape and reversible charge for amplified chemo-photodynamic therapy of breast cancer. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.03.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Huang X, Qiu M, Wang T, Li B, Zhang S, Zhang T, Liu P, Wang Q, Qian ZR, Zhu C, Wu M, Zhao J. Carrier-free multifunctional nanomedicine for intraperitoneal disseminated ovarian cancer therapy. J Nanobiotechnology 2022;20:93. [PMID: 35193583 DOI: 10.1186/s12951-022-01300-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
25 Fan Z, Shi D, Zuo W, Feng J, Ge D, Su G, Yang L, Hou Z. Trojan-Horse Diameter-Reducible Nanotheranostics for Macroscopic/Microscopic Imaging-Monitored Chemo-Antiangiogenic Therapy. ACS Appl Mater Interfaces 2022;14:5033-52. [PMID: 35045703 DOI: 10.1021/acsami.1c22350] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Chen X, Fan X, Zhang Y, Wei Y, Zheng H, Bao D, Xu H, Piao J, Li F, Zheng H. Cooperative coordination-mediated multi-component self-assembly of “all-in-one” nanospike theranostic nano-platform for MRI-guided synergistic therapy against breast cancer. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.02.027] [Reference Citation Analysis]
27 Li L, He W, You W, Yan J, Liu W. Turing miRNA into infinite coordination supermolecule: a general and enabling nanoengineering strategy for resurrecting nuclear acid therapeutics. J Nanobiotechnology 2022;20:10. [PMID: 34983557 DOI: 10.1186/s12951-021-01212-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
28 Wang Z, Yang L, Li Y, Song S, Qu J, He R, Ren S, Gong P. An activatable, carrier-free, triple-combination nanomedicine for ALK/EGFR-mutant non-small cell lung cancer highly permeable targeted chemotherapy. New J Chem 2022;46:17673-7. [DOI: 10.1039/d2nj03231g] [Reference Citation Analysis]
29 Raza F, Zafar H, Khan MW, Ullah A, Khan AU, Baseer A, Fareed R, Sohail M. Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. Mater Adv . [DOI: 10.1039/d1ma00961c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 Jiang S, Fu Y, Zhang X, Yu T, Lu B, Du J. Research Progress of Carrier-Free Antitumor Nanoparticles Based on Phytochemicals. Front Bioeng Biotechnol 2021;9:799806. [PMID: 34957085 DOI: 10.3389/fbioe.2021.799806] [Reference Citation Analysis]
31 Jiang B, Hao D, Li C, Lu S, Pei Q, Xie Z. Fluorinated paclitaxel prodrugs for potentiated stability and chemotherapy. J Mater Chem B 2021;9:9971-9. [PMID: 34871339 DOI: 10.1039/d1tb02165f] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
32 Ma K, Shi J, Pei Y, Pei Z. A carrier-free supramolecular nanoprodrug based on lactose-functionalized dimeric camptothecin via self-assembly in water for targeted and fluorescence imaging-guided chemo-photodynamic therapy. J Colloid Interface Sci 2022;609:353-63. [PMID: 34902672 DOI: 10.1016/j.jcis.2021.12.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]