BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I, King GF. Animal toxins - Nature's evolutionary-refined toolkit for basic research and drug discovery. Biochem Pharmacol 2020;181:114096. [PMID: 32535105 DOI: 10.1016/j.bcp.2020.114096] [Cited by in Crossref: 53] [Cited by in F6Publishing: 60] [Article Influence: 26.5] [Reference Citation Analysis]
Number Citing Articles
1 Shrestha A, Lahooti B, Mikelis CM, Mattheolabakis G. Chlorotoxin and Lung Cancer: A Targeting Perspective for Drug Delivery. Pharmaceutics 2022;14:2613. [DOI: 10.3390/pharmaceutics14122613] [Reference Citation Analysis]
2 Erkoc P, von Reumont BM, Lüddecke T, Henke M, Ulshöfer T, Vilcinskas A, Fürst R, Schiffmann S. The Pharmacological Potential of Novel Melittin Variants from the Honeybee and Solitary Bees against Inflammation and Cancer. Toxins 2022;14:818. [DOI: 10.3390/toxins14120818] [Reference Citation Analysis]
3 Chu Y, Zhang H, Zhang L. Function Prediction of Peptide Toxins with Sequence-Based Multi-Tasking PU Learning Method. Toxins 2022;14:811. [DOI: 10.3390/toxins14110811] [Reference Citation Analysis]
4 Mazumder T, Salam MA, Mitra S, Hossain S, Hussain MS. Current antithrombotic therapies and prospects of natural compounds in the management of the thrombotic disorder. NRFHH 2022;3:134-175. [DOI: 10.53365/nrfhh/154960] [Reference Citation Analysis]
5 Al-shaeli SJJ, Hussen TJ, Ethaeb AM. Effect of honey bee venom on the histological changes of testes and hormonal disturbance in diabetic mice. Vet World. [DOI: 10.14202/vetworld.2022.2357-2364] [Reference Citation Analysis]
6 Kuzmenkov AI, Peigneur S, Nasburg JA, Mineev KS, Nikolaev MV, Pinheiro-junior EL, Arseniev AS, Wulff H, Tytgat J, Vassilevski AA. Apamin structure and pharmacology revisited. Front Pharmacol 2022;13:977440. [DOI: 10.3389/fphar.2022.977440] [Reference Citation Analysis]
7 De Cena GL, Scavassa BV, Conceição K. In Silico Prediction of Anti-Infective and Cell-Penetrating Peptides from Thalassophryne nattereri Natterin Toxins. Pharmaceuticals 2022;15:1141. [DOI: 10.3390/ph15091141] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Zúñiga L, Cayo A, González W, Vilos C, Zúñiga R. Potassium Channels as a Target for Cancer Therapy: Current Perspectives. Onco Targets Ther 2022;15:783-97. [PMID: 35899081 DOI: 10.2147/OTT.S326614] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Mateos DL, Yarov-yarovoy V. Structural Modeling of Peptide Toxin - Ion Channel Interactions using RosettaDock.. [DOI: 10.1101/2022.06.29.498146] [Reference Citation Analysis]
10 Alvarez AM, Alvarez-flores MP, Deocesano-pereira C, Goldfeder MB, Chudzinski-tavassi AM, Moreira V, Teixeira C. Losac and Lopap Recombinant Proteins from Lonomia obliqua Bristles Positively Modulate the Myoblast Proliferation Process. Front Mol Biosci 2022;9:904737. [DOI: 10.3389/fmolb.2022.904737] [Reference Citation Analysis]
11 Oliveira AL, Viegas MF, da Silva SL, Soares AM, Ramos MJ, Fernandes PA. The chemistry of snake venom and its medicinal potential. Nat Rev Chem 2022;:1-19. [PMID: 35702592 DOI: 10.1038/s41570-022-00393-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Herrera-bravo J, Farías JG, Contreras FP, Herrera-belén L, Beltrán JF. PEP-PREDNa+: A web server for prediction of highly specific peptides targeting voltage-gated Na+ channels using machine learning techniques. Computers in Biology and Medicine 2022;145:105414. [DOI: 10.1016/j.compbiomed.2022.105414] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Hwang S, Jo Y, Cohen CF, Kim Y, Berta T, Park C. Venom Peptide Toxins Targeting the Outer Pore Region of Transient Receptor Potential Vanilloid 1 in Pain: Implications for Analgesic Drug Development. IJMS 2022;23:5772. [DOI: 10.3390/ijms23105772] [Reference Citation Analysis]
14 von Reumont BM, Anderluh G, Antunes A, Ayvazyan N, Beis D, Caliskan F, Crnković A, Damm M, Dutertre S, Ellgaard L, Gajski G, German H, Halassy B, Hempel BF, Hucho T, Igci N, Ikonomopoulou MP, Karbat I, Klapa MI, Koludarov I, Kool J, Lüddecke T, Ben Mansour R, Vittoria Modica M, Moran Y, Nalbantsoy A, Ibáñez MEP, Panagiotopoulos A, Reuveny E, Céspedes JS, Sombke A, Surm JM, Undheim EAB, Verdes A, Zancolli G. Modern venomics-Current insights, novel methods, and future perspectives in biological and applied animal venom research. Gigascience 2022;11:giac048. [PMID: 35640874 DOI: 10.1093/gigascience/giac048] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Silva CND, Nunes KP, Dourado LFN, Vieira TO, Mariano XM, Cunha Junior ADS, de Lima ME. From the PnTx2-6 Toxin to the PnPP-19 Engineered Peptide: Therapeutic Potential in Erectile Dysfunction, Nociception, and Glaucoma. Front Mol Biosci 2022;9:831823. [DOI: 10.3389/fmolb.2022.831823] [Reference Citation Analysis]
16 Shin MK, Lee B, Kim ST, Yoo JS, Sung J. Designing a Novel Functional Peptide With Dual Antimicrobial and Anti-inflammatory Activities via in Silico Methods. Front Immunol 2022;13:821070. [DOI: 10.3389/fimmu.2022.821070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Mackessy SP. Venom production and secretion in reptiles. J Exp Biol 2022;225:jeb227348. [PMID: 35363854 DOI: 10.1242/jeb.227348] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Moradmand M, Yousefi M. Ecological niche modelling and climate change in two species groups of huntsman spider genus Eusparassus in the Western Palearctic. Sci Rep 2022;12:4138. [PMID: 35264715 DOI: 10.1038/s41598-022-08145-9] [Reference Citation Analysis]
19 Duran LH, Wilson DT, Lee Rymer T. Behaviour of the Sydney funnel-web spider Atrax robustus over different contexts, time, and stimuli. Toxicon: X 2022;13:100093. [DOI: 10.1016/j.toxcx.2022.100093] [Reference Citation Analysis]
20 Rivera-de-torre E, Rimbault C, Jenkins TP, Sørensen CV, Damsbo A, Saez NJ, Duhoo Y, Hackney CM, Ellgaard L, Laustsen AH. Strategies for Heterologous Expression, Synthesis, and Purification of Animal Venom Toxins. Front Bioeng Biotechnol 2022;9:811905. [DOI: 10.3389/fbioe.2021.811905] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Zancolli G, Reijnders M, Waterhouse RM, Robinson-Rechavi M. Convergent evolution of venom gland transcriptomes across Metazoa. Proc Natl Acad Sci U S A 2022;119:e2111392119. [PMID: 34983844 DOI: 10.1073/pnas.2111392119] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Almeida JR, Mendes B, Lancellotti M, Franchi GC, Passos Ó, Ramos MJ, Fernandes PA, Alves C, Vale N, Gomes P, da Silva SL. Lessons from a Single Amino Acid Substitution: Anticancer and Antibacterial Properties of Two Phospholipase A2-Derived Peptides. CIMB 2022;44:46-62. [DOI: 10.3390/cimb44010004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Hayashi MAF, Campeiro JD, Yonamine CM. Revisiting the potential of South American rattlesnake Crotalus durissus terrificus toxins as therapeutic, theranostic and/or biotechnological agents. Toxicon 2021;206:1-13. [PMID: 34896407 DOI: 10.1016/j.toxicon.2021.12.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Lüddecke T, Vilcinskas A. Heilen mit Tiergiften: Tödliche Waffen des Tierreichs zur Therapie von Krankheiten nutzbar machen. Chem Unserer Zeit. [DOI: 10.1002/ciuz.202100005] [Reference Citation Analysis]
25 Siniavin AE, Streltsova MA, Nikiforova MA, Kudryavtsev DS, Grinkina SD, Gushchin VA, Mozhaeva VA, Starkov VG, Osipov AV, Lummis SCR, Tsetlin VI, Utkin YN. Snake venom phospholipase A2s exhibit strong virucidal activity against SARS-CoV-2 and inhibit the viral spike glycoprotein interaction with ACE2. Cell Mol Life Sci 2021;78:7777-94. [PMID: 34714362 DOI: 10.1007/s00018-021-03985-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
26 Gorai B, Vashisth H. Structures and interactions of insulin-like peptides from cone snail venom. Proteins 2021. [PMID: 34661928 DOI: 10.1002/prot.26265] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Krämer J, Peigneur S, Tytgat J, Jenner RA, van Toor R, Predel R. A Pseudoscorpion's Promising Pinch: The venom of Chelifer cancroides contains a rich source of novel compounds. Toxicon 2021;201:92-104. [PMID: 34416254 DOI: 10.1016/j.toxicon.2021.08.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Sanches K, Wai DCC, Norton RS. Conformational dynamics in peptide toxins: Implications for receptor interactions and molecular design. Toxicon 2021;201:127-40. [PMID: 34454969 DOI: 10.1016/j.toxicon.2021.08.020] [Reference Citation Analysis]
29 Coulter-Parkhill A, McClean S, Gault VA, Irwin N. Therapeutic Potential of Peptides Derived from Animal Venoms: Current Views and Emerging Drugs for Diabetes. Clin Med Insights Endocrinol Diabetes 2021;14:11795514211006071. [PMID: 34621137 DOI: 10.1177/11795514211006071] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 Kimura T. Stability and Safety of Inhibitor Cystine Knot Peptide, GTx1-15, from the Tarantula Spider Grammostola rosea. Toxins (Basel) 2021;13:621. [PMID: 34564625 DOI: 10.3390/toxins13090621] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Lüddecke T, Paas A, Talmann L, Kirchhoff KN, von Reumont BM, Billion A, Timm T, Lochnit G, Vilcinskas A. A Spider Toxin Exemplifies the Promises and Pitfalls of Cell-Free Protein Production for Venom Biodiscovery. Toxins (Basel) 2021;13:575. [PMID: 34437446 DOI: 10.3390/toxins13080575] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Nixon SA, Robinson SD, Agwa AJ, Walker AA, Choudhary S, Touchard A, Undheim EAB, Robertson A, Vetter I, Schroeder CI, Kotze AC, Herzig V, King GF. Multipurpose peptides: The venoms of Amazonian stinging ants contain anthelmintic ponericins with diverse predatory and defensive activities. Biochem Pharmacol 2021;192:114693. [PMID: 34302796 DOI: 10.1016/j.bcp.2021.114693] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
33 de Assis DRR, Pimentel PMO, Dos Reis PVM, Rabelo RAN, Vitor RWA, Cordeiro MDN, Felicori LF, Olórtegui CDC, Resende JM, Teixeira MM, Borges MH, de Lima ME, Pimenta AMC, Machado FS. Tityus serrulatus (Scorpion): From the Crude Venom to the Construction of Synthetic Peptides and Their Possible Therapeutic Application Against Toxoplasma gondii Infection. Front Cell Infect Microbiol 2021;11:706618. [PMID: 34354963 DOI: 10.3389/fcimb.2021.706618] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
34 Zancolli G, Reijnders M, Waterhouse RM, Robinson-rechavi M. Convergent evolution of venom gland transcriptomes across Metazoa.. [DOI: 10.1101/2021.07.04.451048] [Reference Citation Analysis]
35 Smallwood TB, Clark RJ. Advances in venom peptide drug discovery: where are we at and where are we heading? Expert Opin Drug Discov 2021;:1-11. [PMID: 33914674 DOI: 10.1080/17460441.2021.1922386] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
36 Gubič Š, Hendrickx LA, Toplak Ž, Sterle M, Peigneur S, Tomašič T, Pardo LA, Tytgat J, Zega A, Mašič LP. Discovery of KV 1.3 ion channel inhibitors: Medicinal chemistry approaches and challenges. Med Res Rev 2021;41:2423-73. [PMID: 33932253 DOI: 10.1002/med.21800] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
37 Klompen AML, Kayal E, Collins AG, Cartwright P. Phylogenetic and Selection Analysis of an Expanded Family of Putatively Pore-Forming Jellyfish Toxins (Cnidaria: Medusozoa). Genome Biol Evol 2021;13:evab081. [PMID: 33892512 DOI: 10.1093/gbe/evab081] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
38 Walker AA, Robinson SD, Paluzzi JV, Merritt DJ, Nixon SA, Schroeder CI, Jin J, Goudarzi MH, Kotze AC, Dekan Z, Sombke A, Alewood PF, Fry BG, Epstein ME, Vetter I, King GF. Production, composition, and mode of action of the painful defensive venom produced by a limacodid caterpillar, Doratifera vulnerans. Proc Natl Acad Sci U S A 2021;118:e2023815118. [PMID: 33893140 DOI: 10.1073/pnas.2023815118] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
39 Herzig V. Animal Venoms-Curse or Cure? Biomedicines 2021;9:413. [PMID: 33921205 DOI: 10.3390/biomedicines9040413] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Kalita B, Saviola AJ, Mukherjee AK. From venom to drugs: a review and critical analysis of Indian snake venom toxins envisaged as anticancer drug prototypes. Drug Discovery Today 2021;26:993-1005. [DOI: 10.1016/j.drudis.2020.12.021] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
41 Ebou A, Koua D, Addablah A, Kakou-Ngazoa S, Dutertre S. Combined Proteotranscriptomic-Based Strategy to Discover Novel Antimicrobial Peptides from Cone Snails. Biomedicines 2021;9:344. [PMID: 33805497 DOI: 10.3390/biomedicines9040344] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
42 Saikia C, Ben-Nissan G, Reuveny E, Karbat I. Production of recombinant venom peptides as tools for ion channel research. Methods Enzymol 2021;654:169-201. [PMID: 34120712 DOI: 10.1016/bs.mie.2021.01.029] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Gerard L, Duvivier L, Gillet JP. Targeting tumor resistance mechanisms. Fac Rev 2021;10:6. [PMID: 33659924 DOI: 10.12703/r/10-6] [Reference Citation Analysis]
44 Jared C, Luiz Mailho‐fontana P, Maria Antoniazzi M. Differences between poison and venom: An attempt at an integrative biological approach. Acta Zool 2021;102:337-50. [DOI: 10.1111/azo.12375] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
45 Siniavin AE, Nikiforova MA, Grinkina SD, Gushchin VA, Starkov VG, Osipov AV, Tsetlin VI, Utkin YN. Snake venom phospholipases A2 possess a strong virucidal activity against SARS-CoV-2 in vitro and block the cell fusion mediated by spike glycoprotein interaction with the ACE2 receptor.. [DOI: 10.1101/2021.01.12.426042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Szabo I, Zoratti M, Biasutto L. Targeting mitochondrial ion channels for cancer therapy. Redox Biol 2021;42:101846. [PMID: 33419703 DOI: 10.1016/j.redox.2020.101846] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 10.5] [Reference Citation Analysis]
47 Chen M, Peng S, Wang L, Yang L, Si Y, Zhou X, Zhang Y, Liu Z. Recombinant PaurTx-3, a spider toxin, inhibits sodium channels and decreases membrane excitability in DRG neurons. Biochem Biophys Res Commun 2020;533:958-64. [PMID: 33004176 DOI: 10.1016/j.bbrc.2020.09.103] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Miyashita M, Mitani N, Kitanaka A, Yakio M, Chen M, Nishimoto S, Uchiyama H, Sue M, Hotta H, Nakagawa Y, Miyagawa H. Identification of an antiviral component from the venom of the scorpion Liocheles australasiae using transcriptomic and mass spectrometric analyses. Toxicon 2021;191:25-37. [PMID: 33340503 DOI: 10.1016/j.toxicon.2020.12.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
49 Hauke TJ, Herzig V. Love bites - Do venomous arachnids make safe pets? Toxicon 2021;190:65-72. [PMID: 33307110 DOI: 10.1016/j.toxicon.2020.12.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
50 Duran LH, Rymer TL, Wilson DT. Variation in venom composition in the Australian funnel-web spiders Hadronyche valida. Toxicon X 2020;8:100063. [PMID: 33305257 DOI: 10.1016/j.toxcx.2020.100063] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
51 Dodou Lima HV, Sidrim de Paula Cavalcante C, Rádis-baptista G. Antimicrobial activity of synthetic Dq-3162, a 28-residue ponericin G-like dinoponeratoxin from the giant ant Dinoponera quadriceps venom, against carbapenem-resistant bacteria. Toxicon 2020;187:19-28. [DOI: 10.1016/j.toxicon.2020.08.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
52 Ryan RYM, Lutzky VP, Herzig V, Smallwood TB, Potriquet J, Wong Y, Masci P, Lavin MF, King GF, Lopez JA, Ikonomopoulou MP, Miles JJ. Venom of the Red-Bellied Black Snake Pseudechis porphyriacus Shows Immunosuppressive Potential. Toxins (Basel) 2020;12:E674. [PMID: 33114591 DOI: 10.3390/toxins12110674] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
53 . Parasitravaganza 2020: Insights into a Virtual Parasitology Conference. Trends Parasitol 2020;36:867-75. [PMID: 33039283 DOI: 10.1016/j.pt.2020.09.009] [Reference Citation Analysis]
54 Tonk M, Vilcinskas A, Grevelding CG, Haeberlein S. Anthelminthic Activity of Assassin Bug Venom against the Blood Fluke Schistosoma mansoni. Antibiotics (Basel) 2020;9:E664. [PMID: 33019687 DOI: 10.3390/antibiotics9100664] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
55 Zhang Q, Si Y, Yang L, Wang L, Peng S, Chen Y, Chen M, Zhou X, Liu Z. Two Novel Peptide Toxins from the Spider Cyriopagopus longipes Inhibit Tetrodotoxin-Sensitive Sodium Channels. Toxins (Basel) 2020;12:E529. [PMID: 32824960 DOI: 10.3390/toxins12090529] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
56 Nixon SA, Welz C, Woods DJ, Costa-Junior L, Zamanian M, Martin RJ. Where are all the anthelmintics? Challenges and opportunities on the path to new anthelmintics. Int J Parasitol Drugs Drug Resist 2020;14:8-16. [PMID: 32814269 DOI: 10.1016/j.ijpddr.2020.07.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
57 Nixon SA, Dekan Z, Robinson SD, Guo S, Vetter I, Kotze AC, Alewood PF, King GF, Herzig V. It Takes Two: Dimerization Is Essential for the Broad-Spectrum Predatory and Defensive Activities of the Venom Peptide Mp1a from the Jack Jumper Ant Myrmecia pilosula. Biomedicines 2020;8:E185. [PMID: 32629771 DOI: 10.3390/biomedicines8070185] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
58 Lüddecke T, Reumont BMV, Förster F, Billion A, Timm T, Lochnit G, Vilcinskas A, Lemke S. An Economic Dilemma Between Molecular Weapon Systems May Explain an Arachno-atypical Venom in Wasp Spiders (Argiope bruennichi). Biomolecules 2020;10:E978. [PMID: 32630016 DOI: 10.3390/biom10070978] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]