BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Burnstock G. The therapeutic potential of purinergic signalling. Biochemical Pharmacology 2018;151:157-65. [DOI: 10.1016/j.bcp.2017.07.016] [Cited by in Crossref: 70] [Cited by in F6Publishing: 65] [Article Influence: 17.5] [Reference Citation Analysis]
Number Citing Articles
1 Illes P, Xu GY, Tang Y. Purinergic Signaling in the Central Nervous System in Health and Disease. Neurosci Bull 2020;36:1239-41. [PMID: 33146814 DOI: 10.1007/s12264-020-00602-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
2 Menzel S, Schwarz N, Haag F, Koch-Nolte F. Nanobody-Based Biologics for Modulating Purinergic Signaling in Inflammation and Immunity. Front Pharmacol 2018;9:266. [PMID: 29636685 DOI: 10.3389/fphar.2018.00266] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
3 Montilla A, Mata GP, Matute C, Domercq M. Contribution of P2X4 Receptors to CNS Function and Pathophysiology. Int J Mol Sci 2020;21:E5562. [PMID: 32756482 DOI: 10.3390/ijms21155562] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
4 Graner MW. Extracellular vesicles in cancer immune responses: roles of purinergic receptors. Semin Immunopathol 2018;40:465-75. [PMID: 30209547 DOI: 10.1007/s00281-018-0706-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
5 Szczepanska-sadowska E, Cudnoch-jedrzejewska A, Sadowski B. Differential role of specific cardiovascular neuropeptides in pain regulation: Relevance to cardiovascular diseases. Neuropeptides 2020;81:102046. [DOI: 10.1016/j.npep.2020.102046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Tang Y, Yin HY, Liu J, Rubini P, Illes P. P2X receptors and acupuncture analgesia. Brain Res Bull 2019;151:144-52. [PMID: 30458249 DOI: 10.1016/j.brainresbull.2018.10.015] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
7 Zhirnov VV, Velihina YS, Mitiukhin OP, Brovarets VS. Intrinsic drug potential of oxazolo[5,4-d]pyrimidines and oxazolo[4,5-d]pyrimidines. Chem Biol Drug Des 2021. [PMID: 34148293 DOI: 10.1111/cbdd.13911] [Reference Citation Analysis]
8 Zarrinmayeh H, Territo PR. Purinergic Receptors of the Central Nervous System: Biology, PET Ligands, and Their Applications. Mol Imaging 2020;19:1536012120927609. [PMID: 32539522 DOI: 10.1177/1536012120927609] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 14.0] [Reference Citation Analysis]
9 Franco-Bocanegra DK, McAuley C, Nicoll JAR, Boche D. Molecular Mechanisms of Microglial Motility: Changes in Ageing and Alzheimer's Disease. Cells 2019;8:E639. [PMID: 31242692 DOI: 10.3390/cells8060639] [Cited by in Crossref: 42] [Cited by in F6Publishing: 27] [Article Influence: 14.0] [Reference Citation Analysis]
10 Appy L, Chardet C, Peyrottes S, Roy B. Synthetic Strategies for Dinucleotides Synthesis. Molecules 2019;24:E4334. [PMID: 31783537 DOI: 10.3390/molecules24234334] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
11 Scarpellino G, Genova T, Munaron L. Purinergic P2X7 Receptor: A Cation Channel Sensitive to Tumor Microenvironment. PRA 2019;14:32-8. [DOI: 10.2174/1574892814666190116122256] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
12 Mumtaz A, Saeed K, Mahmood A, Zaib S, Saeed A, Pelletier J, Sévigny J, Iqbal J. Bisthioureas of pimelic acid and 4-methylsalicylic acid derivatives as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP) and intestinal alkaline phosphatase (IAP): Synthesis and molecular docking studies. Bioorg Chem 2020;101:103996. [PMID: 32563965 DOI: 10.1016/j.bioorg.2020.103996] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
13 García-Carlos CA, Camargo-Loaiza JA, García-Villa D, López-Cervantes JG, Domínguez-Avila JA, González-Aguilar GA, Astiazaran-Garcia H, Montiel-Herrera M. Angiotensin II, ATP and high extracellular potassium induced intracellular calcium responses in primary rat brain endothelial cell cultures. Cell Biochem Funct 2021;39:688-98. [PMID: 33821520 DOI: 10.1002/cbf.3635] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Naviaux RK. Incomplete Healing as a Cause of Aging: The Role of Mitochondria and the Cell Danger Response. Biology (Basel) 2019;8:E27. [PMID: 31083530 DOI: 10.3390/biology8020027] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
15 Wangzhou A, Paige C, Ray PR, Dussor G, Price TJ. Diversity of Receptor Expression in Central and Peripheral Mouse Neurons Estimated from Single Cell RNA Sequencing. Neuroscience 2021;463:86-96. [PMID: 33774127 DOI: 10.1016/j.neuroscience.2021.03.017] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Stokes L, Bidula S, Bibič L, Allum E. To Inhibit or Enhance? Is There a Benefit to Positive Allosteric Modulation of P2X Receptors? Front Pharmacol 2020;11:627. [PMID: 32477120 DOI: 10.3389/fphar.2020.00627] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
17 Dos Anjos F, Simões JLB, Assmann CE, Carvalho FB, Bagatini MD. Potential Therapeutic Role of Purinergic Receptors in Cardiovascular Disease Mediated by SARS-CoV-2. J Immunol Res 2020;2020:8632048. [PMID: 33299899 DOI: 10.1155/2020/8632048] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
18 Andelova K, Egan Benova T, Szeiffova Bacova B, Sykora M, Prado NJ, Diez ER, Hlivak P, Tribulova N. Cardiac Connexin-43 Hemichannels and Pannexin1 Channels: Provocative Antiarrhythmic Targets. Int J Mol Sci 2020;22:E260. [PMID: 33383853 DOI: 10.3390/ijms22010260] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
19 Mesto N, Bailbe D, Eskandar M, Pommier G, Gil S, Tolu S, Movassat J, Tourrel-Cuzin C. Involvement of P2Y signaling in the restoration of glucose-induced insulin exocytosis in pancreatic β cells exposed to glucotoxicity. J Cell Physiol 2021. [PMID: 34435368 DOI: 10.1002/jcp.30564] [Reference Citation Analysis]
20 Colangelo MT, Galli C, Guizzardi S. The effects of polydeoxyribonucleotide on wound healing and tissue regeneration: a systematic review of the literature. Regen Med 2020. [PMID: 32757710 DOI: 10.2217/rme-2019-0118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Zhang Y, Jin Q, Li X, Jiang M, Cui BW, Xia KL, Wu YL, Lian LH, Nan JX. Amelioration of Alcoholic Liver Steatosis by Dihydroquercetin through the Modulation of AMPK-Dependent Lipogenesis Mediated by P2X7R-NLRP3-Inflammasome Activation. J Agric Food Chem 2018;66:4862-71. [PMID: 29706079 DOI: 10.1021/acs.jafc.8b00944] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 6.8] [Reference Citation Analysis]
22 Mancinelli R, Fanò-Illic G, Pietrangelo T, Fulle S. Guanosine-Based Nucleotides, the Sons of a Lesser God in the Purinergic Signal Scenario of Excitable Tissues. Int J Mol Sci 2020;21:E1591. [PMID: 32111063 DOI: 10.3390/ijms21051591] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
23 Eberhardt N, Bergero G, Mazzocco Mariotta YL, Aoki MP. Purinergic modulation of the immune response to infections. Purinergic Signal 2022. [PMID: 34997903 DOI: 10.1007/s11302-021-09838-y] [Reference Citation Analysis]
24 Yin HY, Fan YP, Liu J, Li DT, Guo J, Yu SG. Purinergic ATP triggers moxibustion-induced local anti-nociceptive effect on inflammatory pain model. Purinergic Signal 2021. [PMID: 34378078 DOI: 10.1007/s11302-021-09815-5] [Reference Citation Analysis]
25 Müller CE, Namasivayam V. Recommended tool compounds and drugs for blocking P2X and P2Y receptors. Purinergic Signal 2021;17:633-48. [PMID: 34476721 DOI: 10.1007/s11302-021-09813-7] [Reference Citation Analysis]
26 Denton KM. Adenosine Receptors: A Tantalizing Target for the Treatment of Salt-Sensitive Hypertension. Hypertension 2018;72:283-4. [PMID: 29941514 DOI: 10.1161/HYPERTENSIONAHA.118.10842] [Reference Citation Analysis]
27 Baldissera MD, Souza CF, Tavares GC, Valladão GMR, Da Silva AS, Antoniazzi A, Cunha MA, Baldisserotto B. Purinergic signaling and gene expression of purinoceptors in the head kidney of the silver catfish Rhamdia quelen experimentally infected by Flavobacterium columnare. Microb Pathog 2020;142:104070. [PMID: 32081613 DOI: 10.1016/j.micpath.2020.104070] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
28 Baldissera MD, de Freitas Souza C, Val AL, Baldisserotto B. Involvement of purinergic signaling in the Amazon fish Pterygoplichthys pardalis subjected to handling stress: Relationship with immune response. Aquaculture 2020;514:734481. [DOI: 10.1016/j.aquaculture.2019.734481] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
29 Ratajczak MZ, Kucia M. The Nlrp3 inflammasome - the evolving story of its positive and negative effects on hematopoiesis. Curr Opin Hematol 2021;28:251-61. [PMID: 33901136 DOI: 10.1097/MOH.0000000000000658] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
30 Bednarska-Szczepaniak K, Mieczkowski A, Kierozalska A, Pavlović Saftić D, Głąbała K, Przygodzki T, Stańczyk L, Karolczak K, Watała C, Rao H, Gao ZG, Jacobson KA, Leśnikowski ZJ. Synthesis and evaluation of adenosine derivatives as A1, A2A, A2B and A3 adenosine receptor ligands containing boron clusters as phenyl isosteres and selective A3 agonists. Eur J Med Chem 2021;223:113607. [PMID: 34171656 DOI: 10.1016/j.ejmech.2021.113607] [Reference Citation Analysis]
31 Oliveira-Giacomelli Á, Naaldijk Y, Sardá-Arroyo L, Gonçalves MCB, Corrêa-Velloso J, Pillat MM, de Souza HDN, Ulrich H. Purinergic Receptors in Neurological Diseases With Motor Symptoms: Targets for Therapy. Front Pharmacol 2018;9:325. [PMID: 29692728 DOI: 10.3389/fphar.2018.00325] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
32 Guo J, Yang P, Li YF, Tang JF, He ZX, Yu SG, Yin HY. MicroRNA: Crucial modulator in purinergic signalling involved diseases. Purinergic Signal 2022. [PMID: 35106737 DOI: 10.1007/s11302-022-09840-y] [Reference Citation Analysis]
33 do Carmo TIT, Soares VEM, Wruck J, Dos Anjos F, de Resende E Silva DT, de Oliveira Maciel SFV, Bagatini MD. Hyperinflammation and airway surface liquid dehydration in cystic fibrosis: purinergic system as therapeutic target. Inflamm Res 2021;70:633-49. [PMID: 33904934 DOI: 10.1007/s00011-021-01464-z] [Reference Citation Analysis]
34 Dal Ben D, Antonioli L, Lambertucci C, Fornai M, Blandizzi C, Volpini R. Purinergic Ligands as Potential Therapeutic Tools for the Treatment of Inflammation-Related Intestinal Diseases. Front Pharmacol 2018;9:212. [PMID: 29593540 DOI: 10.3389/fphar.2018.00212] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
35 Blanchard C, Boué-Grabot E, Massé K. Comparative Embryonic Spatio-Temporal Expression Profile Map of the Xenopus P2X Receptor Family. Front Cell Neurosci 2019;13:340. [PMID: 31402854 DOI: 10.3389/fncel.2019.00340] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
36 Baqi Y, Rashed M, Schäkel L, Malik EM, Pelletier J, Sévigny J, Fiene A, Müller CE. Development of Anthraquinone Derivatives as Ectonucleoside Triphosphate Diphosphohydrolase (NTPDase) Inhibitors With Selectivity for NTPDase2 and NTPDase3. Front Pharmacol 2020;11:1282. [PMID: 32973513 DOI: 10.3389/fphar.2020.01282] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
37 Ford AP, Dillon MP, Kitt MM, Gever JR. The discovery and development of gefapixant. Auton Neurosci 2021;235:102859. [PMID: 34403981 DOI: 10.1016/j.autneu.2021.102859] [Reference Citation Analysis]
38 Ochoa-Amaya JE, Queiroz-Hazarbassanov N, Namazu LB, Calefi AS, Tobaruela CN, Margatho R, Palermo-Neto J, Ligeiro de Oliveira AP, Felicio LF. Short-Term Hyperprolactinemia Reduces the Expression of Purinergic P2X7 Receptors during Allergic Inflammatory Response of the Lungs. Neuroimmunomodulation 2018;25:34-41. [PMID: 29874677 DOI: 10.1159/000489312] [Reference Citation Analysis]
39 Vincenzi F, Pasquini S, Battistello E, Merighi S, Gessi S, Borea PA, Varani K. A1 Adenosine Receptor Partial Agonists and Allosteric Modulators: Advancing Toward the Clinic? Front Pharmacol 2020;11:625134. [PMID: 33362567 DOI: 10.3389/fphar.2020.625134] [Reference Citation Analysis]
40 Ali AAH, Abdel-Hafiz L, Tundo-Lavalle F, Hassan SA, von Gall C. P2Y2 deficiency impacts adult neurogenesis and related forebrain functions. FASEB J 2021;35:e21546. [PMID: 33817825 DOI: 10.1096/fj.202002419RR] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Kim JY, Lee EJ, Seong YJ, Ahn Y, Park S, Lee J, Oh SH. AZD-9056, a P2X7 receptor inhibitor, suppresses ATP-induced melanogenesis. J Dermatol Sci 2020;100:227-9. [PMID: 33051087 DOI: 10.1016/j.jdermsci.2020.09.008] [Reference Citation Analysis]
42 Nascimento M, Punaro GR, Serralha RS, Lima DY, Mouro MG, Oliveira LCG, Casarini DE, Rodrigues AM, Higa EMS. Inhibition of the P2X7 receptor improves renal function via renin-angiotensin system and nitric oxide on diabetic nephropathy in rats. Life Sci 2020;251:117640. [PMID: 32259603 DOI: 10.1016/j.lfs.2020.117640] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
43 Baqi Y, Müller CE. Antithrombotic P2Y12 receptor antagonists: recent developments in drug discovery. Drug Discov Today 2019;24:325-33. [PMID: 30291899 DOI: 10.1016/j.drudis.2018.09.021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
44 Cui W, Wang S, Zhang Y, Wang Y, Fan Y, Guo C, Li X, Lei Y, Wang W, Yang X, Hattori M, Li C, Wang J, Yu Y. P2X3-selective mechanism of Gefapixant, a drug candidate for the treatment of refractory chronic cough. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.03.030] [Reference Citation Analysis]
45 Naviaux RK, Naviaux JC, Li K, Wang L, Monk JM, Bright AT, Koslik HJ, Ritchie JB, Golomb BA. Metabolic features of Gulf War illness. PLoS One 2019;14:e0219531. [PMID: 31348786 DOI: 10.1371/journal.pone.0219531] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
46 Naviaux RK. Perspective: Cell danger response Biology-The new science that connects environmental health with mitochondria and the rising tide of chronic illness. Mitochondrion 2020;51:40-5. [PMID: 31877376 DOI: 10.1016/j.mito.2019.12.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
47 Baldissera MD, Souza CF, Descovi SN, Zanella R, Stefani LM, da Silva AS, Baldisserotto B. Purinergic signalling as a potential pathway for trichlorfon induced-inflammation and impairment of the immune response using freshwater silver catfish. Aquaculture 2018;497:91-6. [DOI: 10.1016/j.aquaculture.2018.07.037] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
48 He Y, Huang W, Zhang C, Chen L, Xu R, Li N, Wang F, Han L, Yang M, Zhang D. Energy metabolism disorders and potential therapeutic drugs in heart failure. Acta Pharm Sin B 2021;11:1098-116. [PMID: 34094822 DOI: 10.1016/j.apsb.2020.10.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
49 Jahn SK, Hennicke T, Kassack MU, Drews L, Reichert AS, Fritz G. Distinct influence of the anthracycline derivative doxorubicin on the differentiation efficacy of mESC-derived endothelial progenitor cells. Biochim Biophys Acta Mol Cell Res 2020;1867:118711. [PMID: 32224192 DOI: 10.1016/j.bbamcr.2020.118711] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
50 Ali AAH, Avakian GA, Gall CV. The Role of Purinergic Receptors in the Circadian System. Int J Mol Sci 2020;21:E3423. [PMID: 32408622 DOI: 10.3390/ijms21103423] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
51 Antonioli L, Blandizzi C, Pacher P, Haskó G. The Purinergic System as a Pharmacological Target for the Treatment of Immune-Mediated Inflammatory Diseases. Pharmacol Rev 2019;71:345-82. [PMID: 31235653 DOI: 10.1124/pr.117.014878] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 17.7] [Reference Citation Analysis]
52 Boison D, Jarvis MF. Adenosine kinase: A key regulator of purinergic physiology. Biochem Pharmacol 2021;187:114321. [PMID: 33161022 DOI: 10.1016/j.bcp.2020.114321] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
53 Han Y, Bai C, He XM, Ren QL. P2X7 receptor involved in antitumor activity of atractylenolide I in human cervical cancer cells. Purinergic Signal 2022. [PMID: 35235139 DOI: 10.1007/s11302-022-09854-6] [Reference Citation Analysis]
54 Spinaci A, Buccioni M, Dal Ben D, Marucci G, Volpini R, Lambertucci C. P2X3 Receptor Ligands: Structural Features and Potential Therapeutic Applications. Front Pharmacol 2021;12:653561. [PMID: 33927627 DOI: 10.3389/fphar.2021.653561] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
55 von Kügelgen I. Molecular pharmacology of P2Y receptor subtypes. Biochem Pharmacol 2021;187:114361. [PMID: 33309519 DOI: 10.1016/j.bcp.2020.114361] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
56 Pacini ESA, Jackson EK, Godinho RO. Extracellular metabolism of 3',5'-cyclic AMP as a source of interstitial adenosine in the rat airways. Biochem Pharmacol 2021;192:114713. [PMID: 34331910 DOI: 10.1016/j.bcp.2021.114713] [Reference Citation Analysis]
57 Pacheco PAF, Diogo RT, Magalhães BQ, Faria RX. Plant natural products as source of new P2 receptors ligands. Fitoterapia 2020;146:104709. [DOI: 10.1016/j.fitote.2020.104709] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
58 Salazar BH, Hoffman KA, Zhang C, Zhang Y, Cruz Y, Boone TB, Munoz A. Modulatory effects of intravesical P2X2/3 purinergic receptor inhibition on lower urinary tract electromyographic properties and voiding function of female rats with moderate or severe spinal cord injury. BJU Int 2019;123:538-47. [PMID: 30255543 DOI: 10.1111/bju.14561] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
59 Pacheco PAF, Faria RX. The potential involvement of P2X7 receptor in COVID-19 pathogenesis: A new therapeutic target? Scand J Immunol 2021;93:e12960. [PMID: 32797724 DOI: 10.1111/sji.12960] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
60 Le Y, Lu D, Xue M. Purinergic signaling in thyroid disease. Purinergic Signal 2022. [PMID: 35347568 DOI: 10.1007/s11302-022-09858-2] [Reference Citation Analysis]
61 Ye SS, Tang Y, Song JT. ATP and Adenosine in the Retina and Retinal Diseases. Front Pharmacol 2021;12:654445. [PMID: 34211393 DOI: 10.3389/fphar.2021.654445] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Xu X, Zhang H, Li L, Yang R, Li G, Liu S, Schmalzing G, Nie H, Liang S. Study of the Involvement of the P2Y12 Receptor in Chronic Itching in Type 2 Diabetes Mellitus. Mol Neurobiol 2022. [PMID: 35000152 DOI: 10.1007/s12035-021-02676-4] [Reference Citation Analysis]
63 Beckenkamp LR, Iser IC, Onzi GR, Fontoura DMSD, Bertoni APS, Sévigny J, Lenz G, Wink MR. Characterization of soluble CD39 (SolCD39/NTPDase1) from PiggyBac nonviral system as a tool to control the nucleotides level. Biochem J 2019;476:1637-51. [PMID: 31085558 DOI: 10.1042/BCJ20190040] [Reference Citation Analysis]
64 Gratal P, Lamuedra A, Medina JP, Bermejo-Álvarez I, Largo R, Herrero-Beaumont G, Mediero A. Purinergic System Signaling in Metainflammation-Associated Osteoarthritis. Front Med (Lausanne) 2020;7:506. [PMID: 32984382 DOI: 10.3389/fmed.2020.00506] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Zhang C, Li X, Boone TB, Cruz Y, Zhang Y, Munoz A. Voiding Dysfunction in Old Male Rats Associated With Enlarged Prostate and Irregular Afferent-Triggered Reflex Responses. Int Neurourol J 2020;24:258-69. [PMID: 33017896 DOI: 10.5213/inj.2040114.057] [Reference Citation Analysis]
66 Jarvis MF. Therapeutic potential of adenosine kinase inhibition-Revisited. Pharmacol Res Perspect 2019;7:e00506. [PMID: 31367385 DOI: 10.1002/prp2.506] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
67 Apolloni S, Fabbrizio P, Amadio S, Napoli G, Freschi M, Sironi F, Pevarello P, Tarroni P, Liberati C, Bendotti C, Volonté C. Novel P2X7 Antagonist Ameliorates the Early Phase of ALS Disease and Decreases Inflammation and Autophagy in SOD1-G93A Mouse Model. Int J Mol Sci 2021;22:10649. [PMID: 34638992 DOI: 10.3390/ijms221910649] [Reference Citation Analysis]
68 Beckenkamp LR, da Fontoura DMS, Korb VG, de Campos RP, Onzi GR, Iser IC, Bertoni APS, Sévigny J, Lenz G, Wink MR. Immortalization of Mesenchymal Stromal Cells by TERT Affects Adenosine Metabolism and Impairs their Immunosuppressive Capacity. Stem Cell Rev Rep 2020;16:776-91. [PMID: 32556945 DOI: 10.1007/s12015-020-09986-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
69 Soslau G. Extracellular adenine compounds within the cardiovascular system: Their source, metabolism and function. Medicine in Drug Discovery 2019;4:100018. [DOI: 10.1016/j.medidd.2020.100018] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
70 Price GW, Potter JA, Williams BM, Cliff CL, Wall MJ, Hills CE, Squires PE. Examining Local Cell-to-Cell Signalling in the Kidney Using ATP Biosensing. Methods Mol Biol 2021;2346:135-49. [PMID: 32661915 DOI: 10.1007/7651_2020_297] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Anwar S, Rivest S. Alzheimer's disease: microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation. Expert Opin Ther Targets 2020;24:331-44. [PMID: 32129117 DOI: 10.1080/14728222.2020.1738391] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
72 Vemulapalli H, Albayati S, Patwa VC, Tilley DG, Tsygankov AY, Liverani E. ADP exerts P2Y12 -dependent and P2Y12 -independent effects on primary human T cell responses to stimulation. J Cell Commun Signal 2020;14:111-26. [PMID: 31808055 DOI: 10.1007/s12079-019-00540-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
73 Hirsch MM, Deckmann I, Santos-Terra J, Staevie GZ, Fontes-Dutra M, Carello-Collar G, Körbes-Rockenbach M, Brum Schwingel G, Bauer-Negrini G, Rabelo B, Gonçalves MCB, Corrêa-Velloso J, Naaldijk Y, Castillo ARG, Schneider T, Bambini-Junior V, Ulrich H, Gottfried C. Effects of single-dose antipurinergic therapy on behavioral and molecular alterations in the valproic acid-induced animal model of autism. Neuropharmacology 2020;167:107930. [PMID: 31904357 DOI: 10.1016/j.neuropharm.2019.107930] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]