BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier PA, Chevigné A, Szpakowska M, Volkman BF. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Biochem Pharmacol 2016;114:53-68. [PMID: 27106080 DOI: 10.1016/j.bcp.2016.04.007] [Cited by in Crossref: 65] [Cited by in F6Publishing: 65] [Article Influence: 10.8] [Reference Citation Analysis]
Number Citing Articles
1 Brandhofer M, Hoffmann A, Blanchet X, Siminkovitch E, Rohlfing AK, El Bounkari O, Nestele JA, Bild A, Kontos C, Hille K, Rohde V, Fröhlich A, Golemi J, Gokce O, Krammer C, Scheiermann P, Tsilimparis N, Sachs N, Kempf WE, Maegdefessel L, Otabil MK, Megens RTA, Ippel H, Koenen RR, Luo J, Engelmann B, Mayo KH, Gawaz M, Kapurniotu A, Weber C, von Hundelshausen P, Bernhagen J. Heterocomplexes between the atypical chemokine MIF and the CXC-motif chemokine CXCL4L1 regulate inflammation and thrombus formation. Cell Mol Life Sci 2022;79:512. [PMID: 36094626 DOI: 10.1007/s00018-022-04539-0] [Reference Citation Analysis]
2 Blanks AM, Pedersen LN, Caslin HL, Mihalick VL, Via J, Canada JM, Van Tassell B, Carbone S, Abbate A, Lee Franco R. LPS differentially affects expression of CD14 and CCR2 in monocyte subsets of Post-STEMI patients with hyperglycemia. Diabetes Res Clin Pract 2022;191:110077. [PMID: 36089102 DOI: 10.1016/j.diabres.2022.110077] [Reference Citation Analysis]
3 Gout DY, Groen LS, van Egmond M. The present and future of immunocytokines for cancer treatment. Cell Mol Life Sci 2022;79:509. [PMID: 36066630 DOI: 10.1007/s00018-022-04514-9] [Reference Citation Analysis]
4 D'Uonnolo G, Reynders N, Meyrath M, Abboud D, Uchański T, Laeremans T, Volkman BF, Janji B, Hanson J, Szpakowska M, Chevigné A. The Extended N-Terminal Domain Confers Atypical Chemokine Receptor Properties to CXCR3-B. Front Immunol 2022;13:868579. [PMID: 35720349 DOI: 10.3389/fimmu.2022.868579] [Reference Citation Analysis]
5 Dong H, Feng C, Cai X, Hao Y, Gu X, Cai L, Wu S, Chen J, Liu Z, Xie W, Lu X, Qian H, Liu Y, Cao Y, Zhu J, Xu J, Zhou Y, Ma S, Yang S, Shi Y, Yu H, Shi M, Wang Y, Gu HF, Fan L, Wu L. 7-Methoxyisoflavone ameliorates atopic dermatitis symptoms by regulating multiple signaling pathways and reducing chemokine production. Sci Rep 2022;12:8760. [PMID: 35610286 DOI: 10.1038/s41598-022-12695-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Sonawani A, Kharche S, Dasgupta D, Sengupta D. Allosteric modulation of the chemokine receptor-chemokine CXCR4-CXCL12 complex by tyrosine sulfation. Int J Biol Macromol 2022;206:812-22. [PMID: 35306016 DOI: 10.1016/j.ijbiomac.2022.03.078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Larsen O, van der Velden WJC, Mavri M, Schuermans S, Rummel PC, Karlshøj S, Gustavsson M, Proost P, Våbenø J, Rosenkilde MM. Identification of a conserved chemokine receptor motif that enables ligand discrimination. Sci Signal 2022;15:eabg7042. [PMID: 35258997 DOI: 10.1126/scisignal.abg7042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Lewandowski EM, Kroeck KG, Jacobs LMC, Fenske TG, Witt RN, Hintz AM, Ramsden ER, Zhang X, Peterson F, Volkman BF, Veldkamp CT, Chen Y. Structural Insights into Molecular Recognition by Human Chemokine CCL19. Biochemistry 2022. [PMID: 35156805 DOI: 10.1021/acs.biochem.1c00759] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Brandum EP, Jørgensen AS, Calvo MB, Spiess K, Peterson FC, Yang Z, Volkman BF, Veldkamp CT, Rosenkilde MM, Goth CK, Hjortø GM. Selective Boosting of CCR7-Acting Chemokines; Short Peptides Boost Chemokines with Short Basic Tails, Longer Peptides Boost Chemokines with Long Basic Tails. Int J Mol Sci 2022;23:1397. [PMID: 35163323 DOI: 10.3390/ijms23031397] [Reference Citation Analysis]
10 Sadri F, Rezaei Z, Fereidouni M. The significance of the SDF-1/CXCR4 signaling pathway in the normal development. Mol Biol Rep 2022. [PMID: 35067815 DOI: 10.1007/s11033-021-07069-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Sowa JE, Tokarski K. Cellular, synaptic, and network effects of chemokines in the central nervous system and their implications to behavior. Pharmacol Rep 2021;73:1595-625. [PMID: 34498203 DOI: 10.1007/s43440-021-00323-2] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
12 Gutjahr JC, Crawford KS, Jensen DR, Naik P, Peterson FC, Samson GPB, Legler DF, Duchene J, Veldkamp CT, Rot A, Volkman BF. The dimeric form of CXCL12 binds to atypical chemokine receptor 1. Sci Signal 2021;14:eabc9012. [PMID: 34404752 DOI: 10.1126/scisignal.abc9012] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Kharche S, Joshi M, Chattopadhyay A, Sengupta D. Conformational plasticity and dynamic interactions of the N-terminal domain of the chemokine receptor CXCR1. PLoS Comput Biol 2021;17:e1008593. [PMID: 34014914 DOI: 10.1371/journal.pcbi.1008593] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
14 Okamoto Y, Shikano S. Tyrosine sulfation and O-glycosylation of chemoattractant receptor GPR15 differentially regulate interaction with GPR15L. J Cell Sci 2021;134:jcs247833. [PMID: 33758080 DOI: 10.1242/jcs.247833] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Liu K, Shen L, Wu M, Liu ZJ, Hua T. Structural insights into the activation of chemokine receptor CXCR2. FEBS J 2021. [PMID: 33835690 DOI: 10.1111/febs.15865] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
16 Chevigné A, Janji B, Meyrath M, Reynders N, D'Uonnolo G, Uchański T, Xiao M, Berchem G, Ollert M, Kwon YJ, Noman MZ, Szpakowska M. CXCL10 Is an Agonist of the CC Family Chemokine Scavenger Receptor ACKR2/D6. Cancers (Basel) 2021;13:1054. [PMID: 33801414 DOI: 10.3390/cancers13051054] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
17 Kline JM, Heusinkveld LE, Taranto E, Martin CB, Tomasi AG, Hsu IJ, Cho K, Khillan JS, Murphy PM, Pontejo SM. Structural and functional analysis of Ccr1l1, a Rodentia-restricted eosinophil-selective chemokine receptor homologue. J Biol Chem 2021;296:100373. [PMID: 33548230 DOI: 10.1016/j.jbc.2021.100373] [Reference Citation Analysis]
18 Krammer C, Kontos C, Dewor M, Hille K, Dalla Volta B, El Bounkari O, Taş K, Sinitski D, Brandhofer M, Megens RTA, Weber C, Schultz JR, Bernhagen J, Kapurniotu A. A MIF-Derived Cyclopeptide that Inhibits MIF Binding and Atherogenic Signaling via the Chemokine Receptor CXCR2. Chembiochem 2021;22:1012-9. [PMID: 33125165 DOI: 10.1002/cbic.202000574] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
19 Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Rajagopal S. Biased agonism at chemokine receptors. Cell Signal 2021;78:109862. [PMID: 33249087 DOI: 10.1016/j.cellsig.2020.109862] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
20 Kouzeli A, Collins PJ, Metzemaekers M, Meyrath M, Szpakowska M, Artinger M, Struyf S, Proost P, Chevigne A, Legler DF, Eberl M, Moser B. CXCL14 Preferentially Synergizes With Homeostatic Chemokine Receptor Systems. Front Immunol 2020;11:561404. [PMID: 33123134 DOI: 10.3389/fimmu.2020.561404] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
21 Wedemeyer MJ, Mahn SA, Getschman AE, Crawford KS, Peterson FC, Marchese A, McCorvy JD, Volkman BF. The chemokine X-factor: Structure-function analysis of the CXC motif at CXCR4 and ACKR3. J Biol Chem 2020;295:13927-39. [PMID: 32788219 DOI: 10.1074/jbc.RA120.014244] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
22 Liu K, Wu L, Yuan S, Wu M, Xu Y, Sun Q, Li S, Zhao S, Hua T, Liu ZJ. Structural basis of CXC chemokine receptor 2 activation and signalling. Nature 2020;585:135-40. [PMID: 32610344 DOI: 10.1038/s41586-020-2492-5] [Cited by in Crossref: 24] [Cited by in F6Publishing: 61] [Article Influence: 12.0] [Reference Citation Analysis]
23 Abdullah Zubir AZ, Whawell SA, Wong TS, Khurram SA. The chemokine lymphotactin and its recombinant variants in oral cancer cell regulation. Oral Dis 2020;26:1668-76. [PMID: 32562323 DOI: 10.1111/odi.13500] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
24 Meyrath M, Reynders N, Uchański T, Chevigné A, Szpakowska M. Systematic reassessment of chemokine-receptor pairings confirms CCL20 but not CXCL13 and extends the spectrum of ACKR4 agonists to CCL22. J Leukoc Biol 2021;109:373-6. [PMID: 32480426 DOI: 10.1002/JLB.2AB0520-275R] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Perpiñá-Viciano C, Işbilir A, Zarca A, Caspar B, Kilpatrick LE, Hill SJ, Smit MJ, Lohse MJ, Hoffmann C. Kinetic Analysis of the Early Signaling Steps of the Human Chemokine Receptor CXCR4. Mol Pharmacol 2020;98:72-87. [PMID: 32474443 DOI: 10.1124/mol.119.118448] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
26 Ngo T, Stephens BS, Gustavsson M, Holden LG, Abagyan R, Handel TM, Kufareva I. Crosslinking-guided geometry of a complete CXC receptor-chemokine complex and the basis of chemokine subfamily selectivity. PLoS Biol 2020;18:e3000656. [PMID: 32271748 DOI: 10.1371/journal.pbio.3000656] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
27 Crijns H, Vanheule V, Proost P. Targeting Chemokine-Glycosaminoglycan Interactions to Inhibit Inflammation. Front Immunol 2020;11:483. [PMID: 32296423 DOI: 10.3389/fimmu.2020.00483] [Cited by in Crossref: 22] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
28 D'Agostino G, García-Cuesta EM, Gomariz RP, Rodríguez-Frade JM, Mellado M. The multilayered complexity of the chemokine receptor system. Biochem Biophys Res Commun 2020;528:347-58. [PMID: 32145914 DOI: 10.1016/j.bbrc.2020.02.120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
29 Gustavsson M. New insights into the structure and function of chemokine receptor:chemokine complexes from an experimental perspective. J Leukoc Biol 2020;107:1115-22. [DOI: 10.1002/jlb.2mr1219-288r] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
30 Larsen O, Lückmann M, van der Velden WJC, Oliva-Santiago M, Brvar M, Ulven T, Frimurer TM, Karlshøj S, Rosenkilde MM. Selective Allosteric Modulation of N-Terminally Cleaved, but Not Full Length CCL3 in CCR1. ACS Pharmacol Transl Sci 2019;2:429-41. [PMID: 32259075 DOI: 10.1021/acsptsci.9b00059] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Bhusal RP, Eaton JRO, Chowdhury ST, Power CA, Proudfoot AEI, Stone MJ, Bhattacharya S. Evasins: Tick Salivary Proteins that Inhibit Mammalian Chemokines. Trends Biochem Sci 2020;45:108-22. [PMID: 31679840 DOI: 10.1016/j.tibs.2019.10.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
32 Bhusal RP, Foster SR, Stone MJ. Structural basis of chemokine and receptor interactions: Key regulators of leukocyte recruitment in inflammatory responses. Protein Sci 2020;29:420-32. [PMID: 31605402 DOI: 10.1002/pro.3744] [Cited by in Crossref: 13] [Cited by in F6Publishing: 21] [Article Influence: 4.3] [Reference Citation Analysis]
33 Jørgensen AS, Larsen O, Uetz-von Allmen E, Lückmann M, Legler DF, Frimurer TM, Veldkamp CT, Hjortø GM, Rosenkilde MM. Biased Signaling of CCL21 and CCL19 Does Not Rely on N-Terminal Differences, but Markedly on the Chemokine Core Domains and Extracellular Loop 2 of CCR7. Front Immunol 2019;10:2156. [PMID: 31572374 DOI: 10.3389/fimmu.2019.02156] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
34 Pal S, Chattopadhyay A. Extramembranous Regions in G Protein-Coupled Receptors: Cinderella in Receptor Biology? J Membrane Biol 2019;252:483-97. [DOI: 10.1007/s00232-019-00092-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
35 Reynders N, Abboud D, Baragli A, Noman MZ, Rogister B, Niclou SP, Heveker N, Janji B, Hanson J, Szpakowska M, Chevigné A. The Distinct Roles of CXCR3 Variants and Their Ligands in the Tumor Microenvironment. Cells 2019;8:E613. [PMID: 31216755 DOI: 10.3390/cells8060613] [Cited by in Crossref: 25] [Cited by in F6Publishing: 33] [Article Influence: 8.3] [Reference Citation Analysis]
36 Fuchs J, Brunner C, Schineis P, Hiss JA, Schneider G. Identification of Chemokine Ligands by Biochemical Fragmentation and Simulated Peptide Evolution. Angew Chem Int Ed 2019;58:7138-42. [DOI: 10.1002/anie.201902022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
37 Filipek S. Molecular switches in GPCRs. Current Opinion in Structural Biology 2019;55:114-20. [DOI: 10.1016/j.sbi.2019.03.017] [Cited by in Crossref: 29] [Cited by in F6Publishing: 36] [Article Influence: 9.7] [Reference Citation Analysis]
38 Liu F, McDonald M, Schwessinger B, Joe A, Pruitt R, Erickson T, Zhao X, Stewart V, Ronald PC. Variation and inheritance of the Xanthomonas raxX-raxSTAB gene cluster required for activation of XA21-mediated immunity. Mol Plant Pathol 2019;20:656-72. [PMID: 30773771 DOI: 10.1111/mpp.12783] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
39 Sanchez J, E Huma Z, Lane JR, Liu X, Bridgford JL, Payne RJ, Canals M, Stone MJ. Evaluation and extension of the two-site, two-step model for binding and activation of the chemokine receptor CCR1. J Biol Chem 2019;294:3464-75. [PMID: 30567735 DOI: 10.1074/jbc.RA118.006535] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
40 Smith JS, Nicholson LT, Suwanpradid J, Glenn RA, Knape NM, Alagesan P, Gundry JN, Wehrman TS, Atwater AR, Gunn MD, MacLeod AS, Rajagopal S. Biased agonists of the chemokine receptor CXCR3 differentially control chemotaxis and inflammation. Sci Signal 2018;11:eaaq1075. [PMID: 30401786 DOI: 10.1126/scisignal.aaq1075] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
41 Ortiz Zacarías NV, van Veldhoven JPD, Portner L, van Spronsen E, Ullo S, Veenhuizen M, van der Velden WJC, Zweemer AJM, Kreekel RM, Oenema K, Lenselink EB, Heitman LH, IJzerman AP. Pyrrolone Derivatives as Intracellular Allosteric Modulators for Chemokine Receptors: Selective and Dual-Targeting Inhibitors of CC Chemokine Receptors 1 and 2. J Med Chem 2018;61:9146-61. [PMID: 30256641 DOI: 10.1021/acs.jmedchem.8b00605] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
42 Riutta SJ, Larsen O, Getschman AE, Rosenkilde MM, Hwang ST, Volkman BF. Mutational analysis of CCL20 reveals flexibility of N-terminal amino acid composition and length. J Leukoc Biol 2018;104:423-34. [DOI: 10.1002/jlb.1vma0218-049r] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
43 Szpakowska M, Meyrath M, Reynders N, Counson M, Hanson J, Steyaert J, Chevigné A. Mutational analysis of the extracellular disulphide bridges of the atypical chemokine receptor ACKR3/CXCR7 uncovers multiple binding and activation modes for its chemokine and endogenous non-chemokine agonists. Biochemical Pharmacology 2018;153:299-309. [DOI: 10.1016/j.bcp.2018.03.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
44 Monneau YR, Luo L, Sankaranarayanan NV, Nagarajan B, Vivès RR, Baleux F, Desai UR, Arenzana-Seidedos F, Lortat-Jacob H. Solution structure of CXCL13 and heparan sulfate binding show that GAG binding site and cellular signalling rely on distinct domains. Open Biol 2017;7:170133. [PMID: 29070611 DOI: 10.1098/rsob.170133] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
45 Thomas MA, Kleist AB, Volkman BF. Decoding the chemotactic signal. J Leukoc Biol 2018;104:359-74. [PMID: 29873835 DOI: 10.1002/JLB.1MR0218-044] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
46 Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018;285:2944-71. [PMID: 29637711 DOI: 10.1111/febs.14466] [Cited by in Crossref: 228] [Cited by in F6Publishing: 345] [Article Influence: 57.0] [Reference Citation Analysis]
47 Szpakowska M, Nevins AM, Meyrath M, Rhainds D, D'huys T, Guité-Vinet F, Dupuis N, Gauthier PA, Counson M, Kleist A, St-Onge G, Hanson J, Schols D, Volkman BF, Heveker N, Chevigné A. Different contributions of chemokine N-terminal features attest to a different ligand binding mode and a bias towards activation of ACKR3/CXCR7 compared with CXCR4 and CXCR3. Br J Pharmacol 2018;175:1419-38. [PMID: 29272550 DOI: 10.1111/bph.14132] [Cited by in Crossref: 26] [Cited by in F6Publishing: 31] [Article Influence: 6.5] [Reference Citation Analysis]
48 Fievez V, Szpakowska M, Mosbah A, Arumugam K, Mathu J, Counson M, Beaupain N, Seguin-Devaux C, Deroo S, Baudy-Floc'h M, Chevigné A. Development of Mimokines, chemokine N terminus-based CXCR4 inhibitors optimized by phage display and rational design. J Leukoc Biol 2018;104:343-57. [PMID: 29570832 DOI: 10.1002/JLB.3MA0118-007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
49 Sahoo AR, Mishra R, Rana S. The Model Structures of the Complement Component 5a Receptor (C5aR) Bound to the Native and Engineered hC5a. Sci Rep 2018;8:2955. [PMID: 29440703 DOI: 10.1038/s41598-018-21290-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
50 Egner JM, Jensen DR, Olp MD, Kennedy NW, Volkman BF, Peterson FC, Smith BC, Hill RB. Development and Validation of 2D Difference Intensity Analysis for Chemical Library Screening by Protein-Detected NMR Spectroscopy. Chembiochem 2018;19:448-58. [PMID: 29239081 DOI: 10.1002/cbic.201700386] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
51 Getschman AE, Imai Y, Larsen O, Peterson FC, Wu X, Rosenkilde MM, Hwang ST, Volkman BF. Protein engineering of the chemokine CCL20 prevents psoriasiform dermatitis in an IL-23-dependent murine model. Proc Natl Acad Sci U S A 2017;114:12460-5. [PMID: 29109267 DOI: 10.1073/pnas.1704958114] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 5.4] [Reference Citation Analysis]
52 Janssens R, Struyf S, Proost P. The unique structural and functional features of CXCL12. Cell Mol Immunol 2018;15:299-311. [PMID: 29082918 DOI: 10.1038/cmi.2017.107] [Cited by in Crossref: 80] [Cited by in F6Publishing: 121] [Article Influence: 16.0] [Reference Citation Analysis]
53 Miller MC, Mayo KH. Chemokines from a Structural Perspective. Int J Mol Sci 2017;18:E2088. [PMID: 28974038 DOI: 10.3390/ijms18102088] [Cited by in Crossref: 68] [Cited by in F6Publishing: 88] [Article Influence: 13.6] [Reference Citation Analysis]
54 Phillips AJ, Taleski D, Koplinski CA, Getschman AE, Moussouras NA, Richard AM, Peterson FC, Dwinell MB, Volkman BF, Payne RJ, Veldkamp CT. CCR7 Sulfotyrosine Enhances CCL21 Binding. Int J Mol Sci 2017;18:E1857. [PMID: 28841151 DOI: 10.3390/ijms18091857] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
55 Thompson S, Martínez-Burgo B, Sepuru KM, Rajarathnam K, Kirby JA, Sheerin NS, Ali S. Regulation of Chemokine Function: The Roles of GAG-Binding and Post-Translational Nitration. Int J Mol Sci 2017;18:E1692. [PMID: 28771176 DOI: 10.3390/ijms18081692] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
56 Wu F, Song G, de Graaf C, Stevens RC. Structure and Function of Peptide-Binding G Protein-Coupled Receptors. J Mol Biol 2017;429:2726-45. [PMID: 28705763 DOI: 10.1016/j.jmb.2017.06.022] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 7.2] [Reference Citation Analysis]
57 Huma ZE, Sanchez J, Lim HD, Bridgford JL, Huang C, Parker BJ, Pazhamalil JG, Porebski BT, Pfleger KDG, Lane JR, Canals M, Stone MJ. Key determinants of selective binding and activation by the monocyte chemoattractant proteins at the chemokine receptor CCR2. Sci Signal 2017;10:eaai8529. [DOI: 10.1126/scisignal.aai8529] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
58 Collins PJ, McCully ML, Martínez-Muñoz L, Santiago C, Wheeldon J, Caucheteux S, Thelen S, Cecchinato V, Laufer JM, Purvanov V, Monneau YR, Lortat-Jacob H, Legler DF, Uguccioni M, Thelen M, Piguet V, Mellado M, Moser B. Epithelial chemokine CXCL14 synergizes with CXCL12 via allosteric modulation of CXCR4. FASEB J 2017;31:3084-97. [PMID: 28360196 DOI: 10.1096/fj.201700013R] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 6.2] [Reference Citation Analysis]
59 Ziarek JJ, Kleist AB, London N, Raveh B, Montpas N, Bonneterre J, St-Onge G, DiCosmo-Ponticello CJ, Koplinski CA, Roy I, Stephens B, Thelen S, Veldkamp CT, Coffman FD, Cohen MC, Dwinell MB, Thelen M, Peterson FC, Heveker N, Volkman BF. Structural basis for chemokine recognition by a G protein-coupled receptor and implications for receptor activation. Sci Signal 2017;10:eaah5756. [PMID: 28325822 DOI: 10.1126/scisignal.aah5756] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 10.6] [Reference Citation Analysis]
60 Arimont M, Sun SL, Leurs R, Smit M, de Esch IJP, de Graaf C. Structural Analysis of Chemokine Receptor-Ligand Interactions. J Med Chem 2017;60:4735-79. [PMID: 28165741 DOI: 10.1021/acs.jmedchem.6b01309] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 11.4] [Reference Citation Analysis]
61 Stone MJ, Hayward JA, Huang C, E Huma Z, Sanchez J. Mechanisms of Regulation of the Chemokine-Receptor Network. Int J Mol Sci 2017;18:E342. [PMID: 28178200 DOI: 10.3390/ijms18020342] [Cited by in Crossref: 103] [Cited by in F6Publishing: 123] [Article Influence: 20.6] [Reference Citation Analysis]
62 Benredjem B, Girard M, Rhainds D, St-Onge G, Heveker N. Mutational Analysis of Atypical Chemokine Receptor 3 (ACKR3/CXCR7) Interaction with Its Chemokine Ligands CXCL11 and CXCL12. J Biol Chem 2017;292:31-42. [PMID: 27875312 DOI: 10.1074/jbc.M116.762252] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 5.2] [Reference Citation Analysis]
63 Metzemaekers M, Van Damme J, Mortier A, Proost P. Regulation of Chemokine Activity - A Focus on the Role of Dipeptidyl Peptidase IV/CD26. Front Immunol 2016;7:483. [PMID: 27891127 DOI: 10.3389/fimmu.2016.00483] [Cited by in Crossref: 39] [Cited by in F6Publishing: 44] [Article Influence: 6.5] [Reference Citation Analysis]
64 Roy I, Getschman AE, Volkman BF, Dwinell MB. Exploiting agonist biased signaling of chemokines to target cancer. Mol Carcinog 2017;56:804-13. [PMID: 27648825 DOI: 10.1002/mc.22571] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
65 Szpakowska M, Dupuis N, Baragli A, Counson M, Hanson J, Piette J, Chevigné A. Human herpesvirus 8-encoded chemokine vCCL2/vMIP-II is an agonist of the atypical chemokine receptor ACKR3/CXCR7. Biochemical Pharmacology 2016;114:14-21. [DOI: 10.1016/j.bcp.2016.05.012] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 3.8] [Reference Citation Analysis]
66 Hanson J, Chevigné A. GPCRs in immunity: Atypical receptors and novel concepts. Biochemical Pharmacology 2016;114:1-2. [DOI: 10.1016/j.bcp.2016.06.017] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]