BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Prinz P, Scharner S, Friedrich T, Schalla M, Goebel-stengel M, Rose M, Stengel A. Central and peripheral expression sites of phoenixin-14 immunoreactivity in rats. Biochemical and Biophysical Research Communications 2017;493:195-201. [DOI: 10.1016/j.bbrc.2017.09.048] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 7.6] [Reference Citation Analysis]
Number Citing Articles
1 Friedrich T, Goebel-stengel M, Schalla MA, Kobelt P, Rose M, Stengel A. Abdominal surgery increases activity in several phoenixin immunoreactive nuclei. Neuroscience Letters 2023;792:136938. [DOI: 10.1016/j.neulet.2022.136938] [Reference Citation Analysis]
2 Zemleduch T, Ratajczyk K, Majewska J, Kimla P, Kudliński B, Marek-bukowiec K, Straburzyńska-migaj E. Phoenixin plasma concentration in heart failure with reduced ejection fraction patients. Pol Ann Med 2022. [DOI: 10.29089/paom/150551] [Reference Citation Analysis]
3 Ozdemir-Kumral ZN, Sen E, Yapici HB, Atakul N, Domruk OF, Aldag Y, Sen LS, Kanpalta Mustafaoğlu F, Yuksel M, Akakin D, Erzik C, Haklar G, Imeryuz N. Phoenixin 14 ameloriates pancreatic injury in streptozotocin-induced diabetic rats by alleviating oxidative burden. J Pharm Pharmacol 2022:rgac055. [PMID: 36130115 DOI: 10.1093/jpp/rgac055] [Reference Citation Analysis]
4 Liang H, Zhao Q, Lv S, Ji X. Regulation and physiological functions of phoenixin. Front Mol Biosci 2022;9:956500. [DOI: 10.3389/fmolb.2022.956500] [Reference Citation Analysis]
5 Basha EH, Eltokhy AKB, Eltantawy AF, Heabah NAE, Elshwaikh SL, El-Harty YM. Linking mitochondrial dynamics and fertility: promoting fertility by phoenixin through modulation of ovarian expression of GnRH receptor and mitochondrial dynamics proteins DRP-1 and Mfn-2. Pflugers Arch 2022. [PMID: 35972578 DOI: 10.1007/s00424-022-02739-y] [Reference Citation Analysis]
6 Kupcova I, Danisovic L, Grgac I, Harsanyi S. Anxiety and Depression: What Do We Know of Neuropeptides? Behavioral Sciences 2022;12:262. [DOI: 10.3390/bs12080262] [Reference Citation Analysis]
7 Breton TS, Murray CA, Huff SR, Phaneuf AM, Tripp BM, Patuel SJ, Martyniuk CJ, Dimaggio MA. Phoenixin-14 alters transcriptome and steroid profiles in female green-spotted puffer (Dichotomyctere nigroviridis). Sci Rep 2022;12. [DOI: 10.1038/s41598-022-13695-z] [Reference Citation Analysis]
8 Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022;11:957. [DOI: 10.3390/cells11060957] [Reference Citation Analysis]
9 Szeliga A, Rudnicka E, Maciejewska-jeske M, Kucharski M, Kostrzak A, Hajbos M, Niwczyk O, Smolarczyk R, Meczekalski B. Neuroendocrine Determinants of Polycystic Ovary Syndrome. IJERPH 2022;19:3089. [DOI: 10.3390/ijerph19053089] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Friedrich T, Schalla MA, Goebel-stengel M, Kobelt P, Rose M, Stengel A. Inflammatory Stress Induced by Intraperitoneal Injection of LPS Increases Phoenixin Expression and Activity in Distinct Rat Brain Nuclei. Brain Sciences 2022;12:135. [DOI: 10.3390/brainsci12020135] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
11 Celik F, Aydin S. Blood and aqueous humor phoenixin, endocan and spexin in patients with diabetes mellitus and cataract with and without diabetic retinopathy. Peptides 2021;:170728. [PMID: 34971675 DOI: 10.1016/j.peptides.2021.170728] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Mcilwraith EK, Zhang N, Belsham DD. The Regulation of Phoenixin: A Fascinating Multidimensional Peptide. Journal of the Endocrine Society 2022;6:bvab192. [DOI: 10.1210/jendso/bvab192] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Rajaei S, Zendehdel M, Rahnema M, Hassanpour S, Asle-Rousta M. Mediatory role of the central NPY, melanocortine and corticotrophin systems on phoenixin-14 induced hyperphagia in neonatal chicken. Gen Comp Endocrinol 2021;315:113930. [PMID: 34673032 DOI: 10.1016/j.ygcen.2021.113930] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Friedrich T, Stengel A. Role of the Novel Peptide Phoenixin in Stress Response and Possible Interactions with Nesfatin-1. Int J Mol Sci 2021;22:9156. [PMID: 34502065 DOI: 10.3390/ijms22179156] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Kalkan ÖF, Şahin Z, Öztürk H, Keser H, Aydın-Abidin S, Abidin İ. Phoenixin-14 reduces the frequency of interictal-like events in mice brain slices. Exp Brain Res 2021. [PMID: 34283252 DOI: 10.1007/s00221-021-06179-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Mukherjee K, Unniappan S. Mouse gastric mucosal endocrine cells are sources and sites of action of Phoenixin-20. Peptides 2021;141:170551. [PMID: 33862165 DOI: 10.1016/j.peptides.2021.170551] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
17 Kaiya H. Phoenixin. Handbook of Hormones 2021. [DOI: 10.1016/b978-0-12-820649-2.00047-4] [Reference Citation Analysis]
18 Schalla M, Goebel-stengel M, Friedrich T, Kühne S, Kobelt P, Rose M, Stengel A. Restraint stress affects circulating NUCB2/nesfatin-1 and phoenixin levels in male rats. Psychoneuroendocrinology 2020;122:104906. [DOI: 10.1016/j.psyneuen.2020.104906] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
19 Canosa LF, Bertucci JI. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Molecular and Cellular Endocrinology 2020;518:111029. [DOI: 10.1016/j.mce.2020.111029] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
20 Billert M, Rak A, Nowak KW, Skrzypski M. Phoenixin: More than Reproductive Peptide. Int J Mol Sci 2020;21:E8378. [PMID: 33171667 DOI: 10.3390/ijms21218378] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
21 Skowron K, Kurnik-Łucka M, Dadański E, Bętkowska-Korpała B, Gil K. Backstage of Eating Disorder-About the Biological Mechanisms behind the Symptoms of Anorexia Nervosa. Nutrients 2020;12:E2604. [PMID: 32867089 DOI: 10.3390/nu12092604] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
22 Nguyen XP, Nakamura T, Osuka S, Bayasula B, Nakanishi N, Kasahara Y, Muraoka A, Hayashi S, Nagai T, Murase T, Goto M, Iwase A, Kikkawa F. Effect of the neuropeptide phoenixin and its receptor GPR173 during folliculogenesis. Reproduction 2019;158:25-34. [PMID: 30933929 DOI: 10.1530/REP-19-0025] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
23 Kalamon N, Błaszczyk K, Szlaga A, Billert M, Skrzypski M, Pawlicki P, Górowska-Wójtowicz E, Kotula-Balak M, Błasiak A, Rak A. Levels of the neuropeptide phoenixin-14 and its receptor GRP173 in the hypothalamus, ovary and periovarian adipose tissue in rat model of polycystic ovary syndrome. Biochem Biophys Res Commun 2020;528:628-35. [PMID: 32505354 DOI: 10.1016/j.bbrc.2020.05.101] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
24 Friedrich T, Schalla MA, Lommel R, Goebel-Stengel M, Kobelt P, Rose M, Stengel A. Restraint stress increases the expression of phoenixin immunoreactivity in rat brain nuclei. Brain Res 2020;1743:146904. [PMID: 32474019 DOI: 10.1016/j.brainres.2020.146904] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
25 Grover HM, Smith PM, Ferguson AV. Phoenixin influences the excitability of nucleus of the solitary tract neurones, effects which are modified by environmental and glucocorticoid stress. J Neuroendocrinol 2020;32:e12855. [PMID: 32436241 DOI: 10.1111/jne.12855] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
26 Rajeswari JJ, Blanco AM, Unniappan S. Phoenixin-20 suppresses food intake, modulates glucoregulatory enzymes, and enhances glycolysis in zebrafish. Am J Physiol Regul Integr Comp Physiol 2020;318:R917-28. [PMID: 32208925 DOI: 10.1152/ajpregu.00019.2020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
27 Wei P, Keller C, Li L. Neuropeptides in gut-brain axis and their influence on host immunity and stress. Comput Struct Biotechnol J 2020;18:843-51. [PMID: 32322366 DOI: 10.1016/j.csbj.2020.02.018] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
28 Billert M, Kołodziejski PA, Strowski MZ, Nowak KW, Skrzypski M. Phoenixin-14 stimulates proliferation and insulin secretion in insulin producing INS-1E cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2019;1866:118533. [DOI: 10.1016/j.bbamcr.2019.118533] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
29 Pałasz A, Tyszkiewicz-Nwafor M, Suszka-Świtek A, Bacopoulou F, Dmitrzak-Węglarz M, Dutkiewicz A, Słopień A, Janas-Kozik M, Wilczyński KM, Filipczyk Ł, Bogus K, Rojczyk E, Paszyńska E, Wiaderkiewicz R. Longitudinal study on novel neuropeptides phoenixin, spexin and kisspeptin in adolescent inpatients with anorexia nervosa - association with psychiatric symptoms. Nutr Neurosci 2019;:1-11. [PMID: 31736434 DOI: 10.1080/1028415X.2019.1692494] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
30 Friedrich T, Schalla M, Scharner S, Kühne S, Goebel-stengel M, Kobelt P, Rose M, Stengel A. Intracerebroventricular injection of phoenixin alters feeding behavior and activates nesfatin-1 immunoreactive neurons in rats. Brain Research 2019;1715:188-95. [DOI: 10.1016/j.brainres.2019.03.034] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
31 Schalla MA, Stengel A. The role of phoenixin in behavior and food intake. Peptides 2019;114:38-43. [DOI: 10.1016/j.peptides.2019.04.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
32 Suszka‐świtek A, Pałasz A, Filipczyk Ł, Menezes IC, Mordecka‐chamera K, Angelone T, Bogus K, Bacopoulou F, Worthington JJ, Wiaderkiewicz R. The Gn RH analogues affect novel neuropeptide SMIM 20/phoenixin and GPR 173 receptor expressions in the female rat hypothalamic–pituitary–gonadal ( HPG ) axis. Clin Exp Pharmacol Physiol 2019;46:350-9. [DOI: 10.1111/1440-1681.13061] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
33 Billert M, Wojciechowicz T, Jasaszwili M, Szczepankiewicz D, Waśko J, Kaźmierczak S, Strowski MZ, Nowak KW, Skrzypski M. Phoenixin-14 stimulates differentiation of 3T3-L1 preadipocytes via cAMP/Epac-dependent mechanism. Biochim Biophys Acta Mol Cell Biol Lipids 2018;1863:1449-57. [PMID: 30251651 DOI: 10.1016/j.bbalip.2018.09.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
34 Stein LM, Haddock CJ, Samson WK, Kolar GR, Yosten GLC. The phoenixins: From discovery of the hormone to identification of the receptor and potential physiologic actions. Peptides 2018;106:45-8. [PMID: 29933026 DOI: 10.1016/j.peptides.2018.06.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
35 Schalla MA, Stengel A. Phoenixin-A Pleiotropic Gut-Brain Peptide. Int J Mol Sci 2018;19:E1726. [PMID: 29891773 DOI: 10.3390/ijms19061726] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
36 Lyu RM, Cowan A, Zhang Y, Chen YH, Dun SL, Chang JK, Dun NJ, Luo JJ. Phoenixin: a novel brain-gut-skin peptide with multiple bioactivity. Acta Pharmacol Sin 2018;39:770-3. [PMID: 29542680 DOI: 10.1038/aps.2017.195] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
37 Mcilwraith EK, Belsham DD. Phoenixin: uncovering its receptor, signaling and functions. Acta Pharmacol Sin 2018;39:774-8. [PMID: 29671415 DOI: 10.1038/aps.2018.13] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
38 Pałasz A, Janas-kozik M, Borrow A, Arias-carrión O, Worthington JJ. The potential role of the novel hypothalamic neuropeptides nesfatin-1, phoenixin, spexin and kisspeptin in the pathogenesis of anxiety and anorexia nervosa. Neurochemistry International 2018;113:120-36. [DOI: 10.1016/j.neuint.2017.12.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 7.3] [Reference Citation Analysis]