BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Surmeier DJ, Schumacker PT, Guzman JD, Ilijic E, Yang B, Zampese E. Calcium and Parkinson's disease. Biochem Biophys Res Commun 2017;483:1013-9. [PMID: 27590583 DOI: 10.1016/j.bbrc.2016.08.168] [Cited by in Crossref: 101] [Cited by in F6Publishing: 92] [Article Influence: 16.8] [Reference Citation Analysis]
Number Citing Articles
1 Liu Y, Deng J, Liu Y, Li W, Nie X. FGF, Mechanism of Action, Role in Parkinson's Disease, and Therapeutics. Front Pharmacol 2021;12:675725. [PMID: 34234672 DOI: 10.3389/fphar.2021.675725] [Reference Citation Analysis]
2 Trombetta-Lima M, Sabogal-Guáqueta AM, Dolga AM. Mitochondrial dysfunction in neurodegenerative diseases: A focus on iPSC-derived neuronal models. Cell Calcium 2021;94:102362. [PMID: 33540322 DOI: 10.1016/j.ceca.2021.102362] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
3 Olloquequi J, Cornejo-Córdova E, Verdaguer E, Soriano FX, Binvignat O, Auladell C, Camins A. Excitotoxicity in the pathogenesis of neurological and psychiatric disorders: Therapeutic implications. J Psychopharmacol 2018;32:265-75. [PMID: 29444621 DOI: 10.1177/0269881118754680] [Cited by in Crossref: 68] [Cited by in F6Publishing: 63] [Article Influence: 17.0] [Reference Citation Analysis]
4 Glaser T, Arnaud Sampaio VF, Lameu C, Ulrich H. Calcium signalling: A common target in neurological disorders and neurogenesis. Seminars in Cell & Developmental Biology 2019;95:25-33. [DOI: 10.1016/j.semcdb.2018.12.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
5 de Aquino CH. Methodological Issues in Randomized Clinical Trials for Prodromal Alzheimer's and Parkinson's Disease. Front Neurol 2021;12:694329. [PMID: 34421799 DOI: 10.3389/fneur.2021.694329] [Reference Citation Analysis]
6 Di Benedetto G, Iannucci LF, Surdo NC, Zanin S, Conca F, Grisan F, Gerbino A, Lefkimmiatis K. Compartmentalized Signaling in Aging and Neurodegeneration. Cells 2021;10:464. [PMID: 33671541 DOI: 10.3390/cells10020464] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Hopp SC. Targeting microglia L-type voltage-dependent calcium channels for the treatment of central nervous system disorders. J Neurosci Res 2021;99:141-62. [PMID: 31997405 DOI: 10.1002/jnr.24585] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
8 Calabrese V, Santoro A, Monti D, Crupi R, Di Paola R, Latteri S, Cuzzocrea S, Zappia M, Giordano J, Calabrese EJ, Franceschi C. Aging and Parkinson's Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radic Biol Med 2018;115:80-91. [PMID: 29080843 DOI: 10.1016/j.freeradbiomed.2017.10.379] [Cited by in Crossref: 146] [Cited by in F6Publishing: 134] [Article Influence: 29.2] [Reference Citation Analysis]
9 Post MR, Lieberman OJ, Mosharov EV. Can Interactions Between α-Synuclein, Dopamine and Calcium Explain Selective Neurodegeneration in Parkinson's Disease? Front Neurosci 2018;12:161. [PMID: 29593491 DOI: 10.3389/fnins.2018.00161] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 9.3] [Reference Citation Analysis]
10 Inoue KI, Miyachi S, Nishi K, Okado H, Nagai Y, Minamimoto T, Nambu A, Takada M. Recruitment of calbindin into nigral dopamine neurons protects against MPTP-Induced parkinsonism. Mov Disord 2019;34:200-9. [PMID: 30161282 DOI: 10.1002/mds.107] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
11 Czeredys M, Vigont VA, Boeva VA, Mikoshiba K, Kaznacheyeva EV, Kuznicki J. Huntingtin-Associated Protein 1A Regulates Store-Operated Calcium Entry in Medium Spiny Neurons From Transgenic YAC128 Mice, a Model of Huntington's Disease. Front Cell Neurosci 2018;12:381. [PMID: 30455632 DOI: 10.3389/fncel.2018.00381] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
12 Lv N, Ma K, Li R, Liang P, Liang P, Gao X. Sublethal and lethal effects of the imidacloprid on the metabolic characteristics based on high-throughput non-targeted metabolomics in Aphis gossypii Glover. Ecotoxicol Environ Saf 2021;212:111969. [PMID: 33561773 DOI: 10.1016/j.ecoenv.2021.111969] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Zampese E, Surmeier DJ. Calcium, Bioenergetics, and Parkinson's Disease. Cells 2020;9:E2045. [PMID: 32911641 DOI: 10.3390/cells9092045] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
14 Francardo V, Geva M, Bez F, Denis Q, Steiner L, Hayden MR, Cenci MA. Pridopidine Induces Functional Neurorestoration Via the Sigma-1 Receptor in a Mouse Model of Parkinson's Disease. Neurotherapeutics 2019;16:465-79. [PMID: 30756361 DOI: 10.1007/s13311-018-00699-9] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 14.5] [Reference Citation Analysis]
15 Giguère N, Delignat-Lavaud B, Herborg F, Voisin A, Li Y, Jacquemet V, Anand-Srivastava M, Gether U, Giros B, Trudeau LÉ. Increased vulnerability of nigral dopamine neurons after expansion of their axonal arborization size through D2 dopamine receptor conditional knockout. PLoS Genet 2019;15:e1008352. [PMID: 31449520 DOI: 10.1371/journal.pgen.1008352] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 10.3] [Reference Citation Analysis]
16 Yuan M, Bancroft EA, Chen J, Srinivasan R, Wang Y. Magnetic Fields and Magnetically Stimulated Gold-Coated Superparamagnetic Iron Oxide Nanoparticles Differentially Modulate L-Type Voltage-Gated Calcium Channel Activity in Midbrain Neurons. ACS Appl Nano Mater 2022;5:205-15. [DOI: 10.1021/acsanm.1c02665] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Joshi H, Jha BK. Fractional-order mathematical model for calcium distribution in nerve cells. Comp Appl Math 2020;39. [DOI: 10.1007/s40314-020-1082-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
18 Kim JW, Yin X, Jhaldiyal A, Khan MR, Martin I, Xie Z, Perez-Rosello T, Kumar M, Abalde-Atristain L, Xu J, Chen L, Eacker SM, Surmeier DJ, Ingolia NT, Dawson TM, Dawson VL. Defects in mRNA Translation in LRRK2-Mutant hiPSC-Derived Dopaminergic Neurons Lead to Dysregulated Calcium Homeostasis. Cell Stem Cell 2020;27:633-645.e7. [PMID: 32846140 DOI: 10.1016/j.stem.2020.08.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
19 Marie A, Darricau M, Touyarot K, Parr-Brownlie LC, Bosch-Bouju C. Role and Mechanism of Vitamin A Metabolism in the Pathophysiology of Parkinson's Disease. J Parkinsons Dis 2021;11:949-70. [PMID: 34120916 DOI: 10.3233/JPD-212671] [Reference Citation Analysis]
20 Pascual-Caro C, Orantos-Aguilera Y, Sanchez-Lopez I, de Juan-Sanz J, Parys JB, Area-Gomez E, Pozo-Guisado E, Martin-Romero FJ. STIM1 Deficiency Leads to Specific Down-Regulation of ITPR3 in SH-SY5Y Cells. Int J Mol Sci 2020;21:E6598. [PMID: 32916960 DOI: 10.3390/ijms21186598] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Rodrigues T, Piccirillo S, Magi S, Preziuso A, Dos Santos Ramos V, Serfilippi T, Orciani M, Maciel Palacio Alvarez M, Luis Dos Santos Tersariol I, Amoroso S, Lariccia V. Control of Ca2+ and metabolic homeostasis by the Na+/Ca2+ exchangers (NCXs) in health and disease. Biochem Pharmacol 2022;203:115163. [PMID: 35803319 DOI: 10.1016/j.bcp.2022.115163] [Reference Citation Analysis]
22 Grillner S, Robertson B, Kotaleski JH. Basal Ganglia—A Motion Perspective. In: Terjung R, editor. Comprehensive Physiology. Wiley; 2011. pp. 1241-75. [DOI: 10.1002/cphy.c190045] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
23 Reeve AK, Grady JP, Cosgrave EM, Bennison E, Chen C, Hepplewhite PD, Morris CM. Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson's disease. NPJ Parkinsons Dis 2018;4:9. [PMID: 29872690 DOI: 10.1038/s41531-018-0044-6] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 11.3] [Reference Citation Analysis]
24 Matuz-mares D, González-andrade M, Araiza-villanueva MG, Vilchis-landeros MM, Vázquez-meza H. Mitochondrial Calcium: Effects of Its Imbalance in Disease. Antioxidants 2022;11:801. [DOI: 10.3390/antiox11050801] [Reference Citation Analysis]
25 Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag A, Lang AE. Parkinson disease. Nat Rev Dis Primers 2017;3. [DOI: 10.1038/nrdp.2017.13] [Cited by in Crossref: 1345] [Cited by in F6Publishing: 1142] [Article Influence: 269.0] [Reference Citation Analysis]
26 Filadi R, Greotti E. The yin and yang of mitochondrial Ca2+ signaling in cell physiology and pathology. Cell Calcium 2021;93:102321. [PMID: 33310302 DOI: 10.1016/j.ceca.2020.102321] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Erhardt B, Marcora MS, Frenkel L, Bochicchio PA, Bodin DH, Silva BA, Farías MI, Allo MÁ, Höcht C, Ferrari CC, Pitossi FJ, Leal MC. Plasma membrane calcium ATPase downregulation in dopaminergic neurons alters cellular physiology and motor behaviour in Drosophila melanogaster. Eur J Neurosci 2021. [PMID: 34312939 DOI: 10.1111/ejn.15401] [Reference Citation Analysis]
28 Surmeier DJ, Halliday GM, Simuni T. Calcium, mitochondrial dysfunction and slowing the progression of Parkinson's disease. Exp Neurol 2017;298:202-9. [PMID: 28780195 DOI: 10.1016/j.expneurol.2017.08.001] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 9.2] [Reference Citation Analysis]
29 Ludewig S, Herrmann U, Michaelsen-Preusse K, Metzdorf K, Just J, Bold C, Müller UC, Korte M. APPsα rescues impaired Ca2+ homeostasis in APP- and APLP2-deficient hippocampal neurons. Proc Natl Acad Sci U S A 2021;118:e2011506118. [PMID: 34172567 DOI: 10.1073/pnas.2011506118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Rivero-Ríos P, Fernández B, Madero-Pérez J, Lozano MR, Hilfiker S. Two-Pore Channels and Parkinson's Disease: Where's the Link? Messenger (Los Angel) 2016;5:67-75. [PMID: 28529828 DOI: 10.1166/msr.2016.1051] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Lopes de Andrade V, Marreilha Dos Santos AP, Aschner M. NEUROTOXICITY OF METAL MIXTURES. Adv Neurotoxicol 2021;5:329-64. [PMID: 34263093 DOI: 10.1016/bs.ant.2020.12.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Stephens AD, Zacharopoulou M, Kaminski Schierle GS. The Cellular Environment Affects Monomeric α-Synuclein Structure. Trends Biochem Sci 2019;44:453-66. [PMID: 30527975 DOI: 10.1016/j.tibs.2018.11.005] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
33 Verma A, Ravindranath V. CaV1.3 L-Type Calcium Channels Increase the Vulnerability of Substantia Nigra Dopaminergic Neurons in MPTP Mouse Model of Parkinson's Disease. Front Aging Neurosci 2019;11:382. [PMID: 32009942 DOI: 10.3389/fnagi.2019.00382] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
34 Torres ERS, Stanojlovic M, Zelikowsky M, Bonsberger J, Hean S, Mulligan C, Baldauf L, Fleming S, Masliah E, Chesselet MF, Fanselow MS, Richter F. Alpha-synuclein pathology, microgliosis, and parvalbumin neuron loss in the amygdala associated with enhanced fear in the Thy1-aSyn model of Parkinson's disease. Neurobiol Dis 2021;158:105478. [PMID: 34390837 DOI: 10.1016/j.nbd.2021.105478] [Reference Citation Analysis]
35 Kubista H, Boehm S, Hotka M. The Paroxysmal Depolarization Shift: Reconsidering Its Role in Epilepsy, Epileptogenesis and Beyond. Int J Mol Sci 2019;20:E577. [PMID: 30699993 DOI: 10.3390/ijms20030577] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
36 Voronin MV, Kadnikov IA, Seredenin SB. Afobazole Restores the Dopamine Level in a 6-Hydroxydopamine Model of Parkinson’s Disease. Neurochem J 2019;13:49-56. [DOI: 10.1134/s1819712419010185] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
37 Britzolaki A, Saurine J, Klocke B, Pitychoutis PM. A Role for SERCA Pumps in the Neurobiology of Neuropsychiatric and Neurodegenerative Disorders. Adv Exp Med Biol 2020;1131:131-61. [PMID: 31646509 DOI: 10.1007/978-3-030-12457-1_6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
38 Zhang I, Hu H. Store-Operated Calcium Channels in Physiological and Pathological States of the Nervous System. Front Cell Neurosci 2020;14:600758. [PMID: 33328896 DOI: 10.3389/fncel.2020.600758] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
39 Lindberg KR, Dougherty ET. Location Specificity of Transcranial Electrical Stimulation on Neuronal Electrodynamics: A Mathematical Model of Ion Channel Gating Dynamics and Ionic Flux Due to Neurostimulation. Front Comput Neurosci 2019;13:17. [PMID: 31019457 DOI: 10.3389/fncom.2019.00017] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
40 Schrank S, Barrington N, Stutzmann GE. Calcium-Handling Defects and Neurodegenerative Disease. Cold Spring Harb Perspect Biol. 2020;12. [PMID: 31427373 DOI: 10.1101/cshperspect.a035212] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
41 Dernie F. Mitophagy in Parkinson's disease: From pathogenesis to treatment target. Neurochem Int 2020;138:104756. [PMID: 32428526 DOI: 10.1016/j.neuint.2020.104756] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
42 Jung H, Kim SY, Canbakis Cecen FS, Cho Y, Kwon SK. Dysfunction of Mitochondrial Ca2+ Regulatory Machineries in Brain Aging and Neurodegenerative Diseases. Front Cell Dev Biol 2020;8:599792. [PMID: 33392190 DOI: 10.3389/fcell.2020.599792] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
43 Faisal M, Kukkle PL. Hypoparathyroidism Masquerading as Corticobasal Syndrome. Mov Disord Clin Pract 2021;8:600-3. [PMID: 33981794 DOI: 10.1002/mdc3.13182] [Reference Citation Analysis]
44 Mamelak M. Parkinson's Disease, the Dopaminergic Neuron and Gammahydroxybutyrate. Neurol Ther 2018;7:5-11. [PMID: 29368093 DOI: 10.1007/s40120-018-0091-2] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
45 Sbodio JI, Snyder SH, Paul BD. Redox Mechanisms in Neurodegeneration: From Disease Outcomes to Therapeutic Opportunities. Antioxid Redox Signal 2019;30:1450-99. [PMID: 29634350 DOI: 10.1089/ars.2017.7321] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 13.0] [Reference Citation Analysis]
46 Zhang S, Eitan E, Wu TY, Mattson MP. Intercellular transfer of pathogenic α-synuclein by extracellular vesicles is induced by the lipid peroxidation product 4-hydroxynonenal. Neurobiol Aging 2018;61:52-65. [PMID: 29035751 DOI: 10.1016/j.neurobiolaging.2017.09.016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 6.2] [Reference Citation Analysis]
47 Saegusa H, Li X, Wang X, Kayakiri M, Tanabe T. Knockdown of microglial Cav2.2 N-type voltage-dependent Ca2+ channel ameliorates behavioral deficits in a mouse model of Parkinson's disease. FEBS Lett 2020;594:2914-22. [PMID: 32484574 DOI: 10.1002/1873-3468.13853] [Reference Citation Analysis]
48 Antonov SA, Novosadova EV. Current State-of-the-Art and Unresolved Problems in Using Human Induced Pluripotent Stem Cell-Derived Dopamine Neurons for Parkinson's Disease Drug Development. Int J Mol Sci 2021;22:3381. [PMID: 33806103 DOI: 10.3390/ijms22073381] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
49 Creed RB, Roberts RC, Farmer CB, McMahon LL, Goldberg MS. Increased glutamate transmission onto dorsal striatum spiny projection neurons in Pink1 knockout rats. Neurobiol Dis 2021;150:105246. [PMID: 33387634 DOI: 10.1016/j.nbd.2020.105246] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
50 Singh A, Yadawa AK, Chaturvedi S, Wahajuddin M, Mishra A, Singh S. Mechanism for antiParkinsonian effect of resveratrol: Involvement of transporters, synaptic proteins, dendrite arborization, biochemical alterations, ER stress and apoptosis. Food Chem Toxicol 2021;155:112433. [PMID: 34302886 DOI: 10.1016/j.fct.2021.112433] [Reference Citation Analysis]
51 Vigont V, Nekrasov E, Shalygin A, Gusev K, Klushnikov S, Illarioshkin S, Lagarkova M, Kiselev SL, Kaznacheyeva E. Patient-Specific iPSC-Based Models of Huntington's Disease as a Tool to Study Store-Operated Calcium Entry Drug Targeting. Front Pharmacol 2018;9:696. [PMID: 30008670 DOI: 10.3389/fphar.2018.00696] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
52 Chen C, Turnbull DM, Reeve AK. Mitochondrial Dysfunction in Parkinson's Disease-Cause or Consequence? Biology (Basel) 2019;8:E38. [PMID: 31083583 DOI: 10.3390/biology8020038] [Cited by in Crossref: 66] [Cited by in F6Publishing: 54] [Article Influence: 22.0] [Reference Citation Analysis]
53 Mattson MP, Arumugam TV. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metab 2018;27:1176-99. [PMID: 29874566 DOI: 10.1016/j.cmet.2018.05.011] [Cited by in Crossref: 245] [Cited by in F6Publishing: 222] [Article Influence: 81.7] [Reference Citation Analysis]
54 Elsworth JD. Parkinson's disease treatment: past, present, and future. J Neural Transm (Vienna) 2020;127:785-91. [PMID: 32172471 DOI: 10.1007/s00702-020-02167-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
55 Grimaldi S, El Mendili MM, Zaaraoui W, Ranjeva JP, Azulay JP, Eusebio A, Guye M. Increased Sodium Concentration in Substantia Nigra in Early Parkinson's Disease: A Preliminary Study With Ultra-High Field (7T) MRI. Front Neurol 2021;12:715618. [PMID: 34566858 DOI: 10.3389/fneur.2021.715618] [Reference Citation Analysis]
56 Mishra AK, Dixit A. Dopaminergic Axons: Key Recitalists in Parkinson's Disease. Neurochem Res 2021. [PMID: 34637100 DOI: 10.1007/s11064-021-03464-1] [Reference Citation Analysis]
57 Joshi H, Jha BK. Modeling the spatiotemporal intracellular calcium dynamics in nerve cell with strong memory effects. International Journal of Nonlinear Sciences and Numerical Simulation 2021;0:000010151520200254. [DOI: 10.1515/ijnsns-2020-0254] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Baik K, Chung SJ, Yoo HS, Lee YH, Jung JH, Sohn YH, Lee PH. Sex‐dependent association of urate on the patterns of striatal dopamine depletion in Parkinson’s disease. Eur J Neurol 2020;27:773-8. [DOI: 10.1111/ene.14152] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Joshi H, Jha BK. Fractionally delineate the neuroprotective function of calbindin-D28k in Parkinson’s disease. Int J Biomath 2019;11:1850103. [DOI: 10.1142/s1793524518501036] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]
60 Curry DW, Stutz B, Andrews ZB, Elsworth JD. Targeting AMPK Signaling as a Neuroprotective Strategy in Parkinson's Disease. J Parkinsons Dis 2018;8:161-81. [PMID: 29614701 DOI: 10.3233/JPD-171296] [Cited by in Crossref: 45] [Cited by in F6Publishing: 21] [Article Influence: 15.0] [Reference Citation Analysis]
61 Boulos C, Yaghi N, El Hayeck R, Heraoui GN, Fakhoury-Sayegh N. Nutritional Risk Factors, Microbiota and Parkinson's Disease: What Is the Current Evidence? Nutrients 2019;11:E1896. [PMID: 31416163 DOI: 10.3390/nu11081896] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
62 Mohammadipour A. A focus on natural products for preventing and cure of mitochondrial dysfunction in Parkinson’s disease. Metab Brain Dis. [DOI: 10.1007/s11011-022-00931-8] [Reference Citation Analysis]
63 Vitanova KS, Stringer KM, Benitez DP, Brenton J, Cummings DM. Dementia associated with disorders of the basal ganglia. J Neurosci Res 2019;97:1728-41. [PMID: 31392765 DOI: 10.1002/jnr.24508] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
64 Betzer C, Lassen LB, Olsen A, Kofoed RH, Reimer L, Gregersen E, Zheng J, Calì T, Gai WP, Chen T, Moeller A, Brini M, Fu Y, Halliday G, Brudek T, Aznar S, Pakkenberg B, Andersen JP, Jensen PH. Alpha-synuclein aggregates activate calcium pump SERCA leading to calcium dysregulation. EMBO Rep 2018;19:e44617. [PMID: 29599149 DOI: 10.15252/embr.201744617] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 11.0] [Reference Citation Analysis]
65 Lezcano LB, Alberti Amador E, González Fraguela ME, Zaldívar Lelo de Larrea G, Serrano RMP, Jiménez Luna NA, Camejo Rodríguez D, Serrano Sánchez T, Francis Turner L, Estupiñán Díaz B, Vega Hurtado Y, Fernández Jiménez I. Motor Coordination Disorders Evaluated through the Grid Test and Changes in the Nigral Nrf2 mRNA Expression in Rats with Pedunculopontine Lesion. Behav Sci (Basel) 2020;10:E156. [PMID: 33066049 DOI: 10.3390/bs10100156] [Reference Citation Analysis]
66 McLeary FA, Rcom-H'cheo-Gauthier AN, Goulding M, Radford RAW, Okita Y, Faller P, Chung RS, Pountney DL. Switching on Endogenous Metal Binding Proteins in Parkinson's Disease. Cells 2019;8:E179. [PMID: 30791479 DOI: 10.3390/cells8020179] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
67 Daniel NH, Aravind A, Thakur P. Are ion channels potential therapeutic targets for Parkinson's disease? Neurotoxicology 2021;87:243-57. [PMID: 34699791 DOI: 10.1016/j.neuro.2021.10.008] [Reference Citation Analysis]
68 Brundin P, Melki R. Prying into the Prion Hypothesis for Parkinson's Disease. J Neurosci 2017;37:9808-18. [PMID: 29021298 DOI: 10.1523/JNEUROSCI.1788-16.2017] [Cited by in Crossref: 132] [Cited by in F6Publishing: 82] [Article Influence: 26.4] [Reference Citation Analysis]
69 Giguère N, Burke Nanni S, Trudeau LE. On Cell Loss and Selective Vulnerability of Neuronal Populations in Parkinson's Disease. Front Neurol 2018;9:455. [PMID: 29971039 DOI: 10.3389/fneur.2018.00455] [Cited by in Crossref: 101] [Cited by in F6Publishing: 87] [Article Influence: 25.3] [Reference Citation Analysis]
70 Wall CE, Rose CM, Adrian M, Zeng YJ, Kirkpatrick DS, Bingol B. PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Reports 2019;29:3280-3292.e7. [DOI: 10.1016/j.celrep.2019.10.130] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
71 Giménez De Béjar V, Caballero Bleda M, Popović N, Popović M. Verapamil Blocks Scopolamine Enhancement Effect on Memory Consolidation in Passive Avoidance Task in Rats. Front Pharmacol 2017;8:566. [PMID: 28878678 DOI: 10.3389/fphar.2017.00566] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
72 Sulzer D, Cassidy C, Horga G, Kang UJ, Fahn S, Casella L, Pezzoli G, Langley J, Hu XP, Zucca FA, Isaias IU, Zecca L. Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson's disease. NPJ Parkinsons Dis 2018;4:11. [PMID: 29644335 DOI: 10.1038/s41531-018-0047-3] [Cited by in Crossref: 79] [Cited by in F6Publishing: 66] [Article Influence: 19.8] [Reference Citation Analysis]
73 Borghammer P. The α-Synuclein Origin and Connectome Model (SOC Model) of Parkinson's Disease: Explaining Motor Asymmetry, Non-Motor Phenotypes, and Cognitive Decline. J Parkinsons Dis 2021;11:455-74. [PMID: 33682732 DOI: 10.3233/JPD-202481] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
74 Jeon Y, Kwon Y, Lee S, Kim S, Jo M, Lee S, Kim SR, Kim K, Kim H. Vitamin B12 Reduces TDP-43 Toxicity by Alleviating Oxidative Stress and Mitochondrial Dysfunction. Antioxidants 2022;11:82. [DOI: 10.3390/antiox11010082] [Reference Citation Analysis]
75 Ureshino RP, Erustes AG, Bassani TB, Wachilewski P, Guarache GC, Nascimento AC, Costa AJ, Smaili SS, Pereira GJDS. The Interplay between Ca2+ Signaling Pathways and Neurodegeneration. Int J Mol Sci 2019;20:E6004. [PMID: 31795242 DOI: 10.3390/ijms20236004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 7.7] [Reference Citation Analysis]
76 Li B, Xia M, Zorec R, Parpura V, Verkhratsky A. Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain Res 2021;1752:147234. [PMID: 33412145 DOI: 10.1016/j.brainres.2020.147234] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
77 Liu N, Bai L, Lu Z, Gu R, Zhao D, Yan F, Bai J. TRPV4 contributes to ER stress and inflammation: implications for Parkinson’s disease. J Neuroinflammation 2022;19. [DOI: 10.1186/s12974-022-02382-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Surmeier DJ, Obeso JA, Halliday GM. Parkinson's Disease Is Not Simply a Prion Disorder. J Neurosci 2017;37:9799-807. [PMID: 29021297 DOI: 10.1523/JNEUROSCI.1787-16.2017] [Cited by in Crossref: 102] [Cited by in F6Publishing: 71] [Article Influence: 20.4] [Reference Citation Analysis]
79 Wang H, Cheung F, Stoll AC, Rockwell P, Figueiredo-Pereira ME. Mitochondrial and calcium perturbations in rat CNS neurons induce calpain-cleavage of Parkin: Phosphatase inhibition stabilizes pSer65Parkin reducing its calpain-cleavage. Biochim Biophys Acta Mol Basis Dis 2019;1865:1436-50. [PMID: 30796971 DOI: 10.1016/j.bbadis.2019.02.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
80 Zaichick SV, McGrath KM, Caraveo G. The role of Ca2+ signaling in Parkinson's disease. Dis Model Mech 2017;10:519-35. [PMID: 28468938 DOI: 10.1242/dmm.028738] [Cited by in Crossref: 79] [Cited by in F6Publishing: 67] [Article Influence: 19.8] [Reference Citation Analysis]
81 Saccà SC, Cutolo CA, Rossi T. Visual Defects and Ageing. In: Harris JR, Korolchuk VI, editors. Biochemistry and Cell Biology of Ageing: Part II Clinical Science. Singapore: Springer; 2019. pp. 393-434. [DOI: 10.1007/978-981-13-3681-2_14] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
82 Rcom-H'cheo-Gauthier AN, Meedeniya AC, Pountney DL. Calcipotriol inhibits α-synuclein aggregation in SH-SY5Y neuroblastoma cells by a Calbindin-D28k-dependent mechanism. J Neurochem 2017;141:263-74. [PMID: 28164279 DOI: 10.1111/jnc.13971] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
83 Bischof H, Burgstaller S, Waldeck-Weiermair M, Rauter T, Schinagl M, Ramadani-Muja J, Graier WF, Malli R. Live-Cell Imaging of Physiologically Relevant Metal Ions Using Genetically Encoded FRET-Based Probes. Cells 2019;8:E492. [PMID: 31121936 DOI: 10.3390/cells8050492] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
84 Liddell JR, White AR. Nexus between mitochondrial function, iron, copper and glutathione in Parkinson's disease. Neurochem Int 2018;117:126-38. [PMID: 28577988 DOI: 10.1016/j.neuint.2017.05.016] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 5.4] [Reference Citation Analysis]
85 Redolfi N, García-Casas P, Fornetto C, Sonda S, Pizzo P, Pendin D. Lighting Up Ca2+ Dynamics in Animal Models. Cells 2021;10:2133. [PMID: 34440902 DOI: 10.3390/cells10082133] [Reference Citation Analysis]
86 Janitzky K. Impaired Phasic Discharge of Locus Coeruleus Neurons Based on Persistent High Tonic Discharge-A New Hypothesis With Potential Implications for Neurodegenerative Diseases. Front Neurol 2020;11:371. [PMID: 32477246 DOI: 10.3389/fneur.2020.00371] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
87 Glaser T, Andrejew R, Oliveira-Giacomelli Á, Ribeiro DE, Bonfim Marques L, Ye Q, Ren WJ, Semyanov A, Illes P, Tang Y, Ulrich H. Purinergic Receptors in Basal Ganglia Diseases: Shared Molecular Mechanisms between Huntington's and Parkinson's Disease. Neurosci Bull 2020;36:1299-314. [PMID: 33026587 DOI: 10.1007/s12264-020-00582-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
88 Knowlton C, Kutterer S, Roeper J, Canavier CC. Calcium dynamics control K-ATP channel-mediated bursting in substantia nigra dopamine neurons: a combined experimental and modeling study. J Neurophysiol 2018;119:84-95. [PMID: 28978764 DOI: 10.1152/jn.00351.2017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
89 Dos Santos AB, Bezerra MA, Rocha ME, Barreto GE, Kohlmeier KA. Higher zinc concentrations in hair of Parkinson’s disease are associated with psychotic complications and depression. J Neural Transm 2019;126:1291-301. [DOI: 10.1007/s00702-019-02041-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
90 Petersen AS, Barloese MCJ, Snoer A, Soerensen AMS, Jensen RH. Verapamil and Cluster Headache: Still a Mystery. A Narrative Review of Efficacy, Mechanisms and Perspectives. Headache: The Journal of Head and Face Pain 2019;59:1198-211. [DOI: 10.1111/head.13603] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 5.7] [Reference Citation Analysis]
91 Sancandi M, Uysal-Onganer P, Kraev I, Mercer A, Lange S. Protein Deimination Signatures in Plasma and Plasma-EVs and Protein Deimination in the Brain Vasculature in a Rat Model of Pre-Motor Parkinson's Disease. Int J Mol Sci 2020;21:E2743. [PMID: 32326590 DOI: 10.3390/ijms21082743] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
92 Guzman JN, Ilijic E, Yang B, Sanchez-Padilla J, Wokosin D, Galtieri D, Kondapalli J, Schumacker PT, Surmeier DJ. Systemic isradipine treatment diminishes calcium-dependent mitochondrial oxidant stress. J Clin Invest 2018;128:2266-80. [PMID: 29708514 DOI: 10.1172/JCI95898] [Cited by in Crossref: 53] [Cited by in F6Publishing: 28] [Article Influence: 13.3] [Reference Citation Analysis]
93 Mortezaei Z, Cazier JB, Mehrabi AA, Cheng C, Masoudi-Nejad A. Novel putative drugs and key initiating genes for neurodegenerative disease determined using network-based genetic integrative analysis. J Cell Biochem 2019;120:5459-71. [PMID: 30302804 DOI: 10.1002/jcb.27825] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
94 Saccà SC, Paluan F, Gandolfi S, Manni G, Cutolo CA, Izzotti A. Common aspects between glaucoma and brain neurodegeneration. Mutat Res Rev Mutat Res 2020;786:108323. [PMID: 33339584 DOI: 10.1016/j.mrrev.2020.108323] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
95 Kovacs G, Reimer L, Jensen PH. Endoplasmic Reticulum-Based Calcium Dysfunctions in Synucleinopathies. Front Neurol 2021;12:742625. [PMID: 34744980 DOI: 10.3389/fneur.2021.742625] [Reference Citation Analysis]
96 Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci 2019;20:E3537. [PMID: 31331039 DOI: 10.3390/ijms20143537] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
97 Schampel A, Kuerten S. Danger: High Voltage-The Role of Voltage-Gated Calcium Channels in Central Nervous System Pathology. Cells 2017;6:E43. [PMID: 29140302 DOI: 10.3390/cells6040043] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
98 Bezprozvanny I, Sorgato MC, Carafoli E. Misery loves company - shared features of neurodegenerative disorders. Biochem Biophys Res Commun 2017;483:979-80. [PMID: 28189152 DOI: 10.1016/j.bbrc.2017.01.099] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
99 Davidi D, Schechter M, Elhadi SA, Matatov A, Nathanson L, Sharon R. α-Synuclein Translocates to the Nucleus to Activate Retinoic-Acid-Dependent Gene Transcription. iScience 2020;23:100910. [PMID: 32120069 DOI: 10.1016/j.isci.2020.100910] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
100 Filadi R, Pizzo P. Mitochondrial calcium handling and neurodegeneration: when a good signal goes wrong. Current Opinion in Physiology 2020;17:224-33. [DOI: 10.1016/j.cophys.2020.08.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
101 Bezprozvanny I. Calcium hypothesis of neurodegeneration - An update. Biochem Biophys Res Commun 2019;520:667-9. [PMID: 31761066 DOI: 10.1016/j.bbrc.2019.10.016] [Reference Citation Analysis]
102 Rani L, Mondal AC. Emerging concepts of mitochondrial dysfunction in Parkinson’s disease progression: Pathogenic and therapeutic implications. Mitochondrion 2020;50:25-34. [DOI: 10.1016/j.mito.2019.09.010] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 13.0] [Reference Citation Analysis]
103 Gómez-Suaga P, Bravo-San Pedro JM, González-Polo RA, Fuentes JM, Niso-Santano M. ER-mitochondria signaling in Parkinson's disease. Cell Death Dis 2018;9:337. [PMID: 29497039 DOI: 10.1038/s41419-017-0079-3] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 14.0] [Reference Citation Analysis]
104 Sree S, Parkkinen I, Their A, Airavaara M, Jokitalo E. Morphological Heterogeneity of the Endoplasmic Reticulum within Neurons and Its Implications in Neurodegeneration. Cells 2021;10:970. [PMID: 33919188 DOI: 10.3390/cells10050970] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
105 Vidyadhara DJ, Sasidharan A, Kutty BM, Raju TR, Alladi PA. Admixing MPTP-resistant and MPTP-vulnerable mice enhances striatal field potentials and calbindin-D28K expression to avert motor behaviour deficits. Behav Brain Res 2019;360:216-27. [PMID: 30529402 DOI: 10.1016/j.bbr.2018.12.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
106 Wang S, Cortes CJ. Interactions with PDZ proteins diversify voltage-gated calcium channel signaling. J Neurosci Res 2021;99:332-48. [PMID: 32476168 DOI: 10.1002/jnr.24650] [Reference Citation Analysis]