BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang C, Chua BE, Yang A, Shabanpoor F, Hossain MA, Wade JD, Rosengren KJ, Smith CM, Gundlach AL. Central relaxin-3 receptor (RXFP3) activation reduces elevated, but not basal, anxiety-like behaviour in C57BL/6J mice. Behavioural Brain Research 2015;292:125-32. [DOI: 10.1016/j.bbr.2015.06.010] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 3.1] [Reference Citation Analysis]
Number Citing Articles
1 Neuwirth LS, Verrengia MT, Harikinish-murrary ZI, Orens JE, Lopez OE. Under or Absent Reporting of Light Stimuli in Testing of Anxiety-Like Behaviors in Rodents: The Need for Standardization. Front Mol Neurosci 2022;15:912146. [DOI: 10.3389/fnmol.2022.912146] [Reference Citation Analysis]
2 Leysen H, Walter D, Clauwaert L, Hellemans L, van Gastel J, Vasudevan L, Martin B, Maudsley S. The Relaxin-3 Receptor, RXFP3, Is a Modulator of Aging-Related Disease. Int J Mol Sci 2022;23:4387. [PMID: 35457203 DOI: 10.3390/ijms23084387] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Boehler NA, Fung SW, Hegazi S, Cheng AH, Cheng HM. Sox2 Ablation in the Suprachiasmatic Nucleus Perturbs Anxiety- and Depressive-like Behaviors. Neurol Int 2021;13:541-54. [PMID: 34842772 DOI: 10.3390/neurolint13040054] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Wong WLE, Dawe GS, Young AH. The putative role of the relaxin-3/RXFP3 system in clinical depression and anxiety: A systematic literature review. Neurosci Biobehav Rev 2021;131:429-50. [PMID: 34537263 DOI: 10.1016/j.neubiorev.2021.09.028] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
5 Hill R, Kouremenos K, Tull D, Maggi A, Schroeder A, Gibbons A, Kulkarni J, Sundram S, Du X. Bazedoxifene – a promising brain active SERM that crosses the blood brain barrier and enhances spatial memory. Psychoneuroendocrinology 2020;121:104830. [DOI: 10.1016/j.psyneuen.2020.104830] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Lee HS, Wang SH, Daniel JT, Hossain MA, Clark RJ, Bathgate RAD, Rosengren KJ. Exploring the Use of Helicogenic Amino Acids for Optimising Single Chain Relaxin-3 Peptide Agonists. Biomedicines 2020;8:E415. [PMID: 33066369 DOI: 10.3390/biomedicines8100415] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Mukai S, Nakada S, Kamada H, Yaguchi R, Deyama S, Kaneda K. Differential sensitivity to detect prosocial effects of 3,4-methylenedioxymethamphetamine (MDMA) in different social approach paradigms in mice. Neuropsychopharmacol Rep 2020;40:297-301. [PMID: 32608059 DOI: 10.1002/npr2.12124] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Eastman G, Valiño G, Radío S, Young RL, Quintana L, Zakon HH, Hofmann HA, Sotelo-Silveira J, Silva A. Brain transcriptomics of agonistic behaviour in the weakly electric fish Gymnotus omarorum, a wild teleost model of non-breeding aggression. Sci Rep 2020;10:9496. [PMID: 32528029 DOI: 10.1038/s41598-020-66494-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
9 Lee HS, Postan M, Song A, Clark RJ, Bathgate RAD, Haugaard-Kedström LM, Rosengren KJ. Development of Relaxin-3 Agonists and Antagonists Based on Grafted Disulfide-Stabilized Scaffolds. Front Chem 2020;8:87. [PMID: 32133341 DOI: 10.3389/fchem.2020.00087] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
10 de Ávila C, Chometton S, Ma S, Pedersen LT, Timofeeva E, Cifani C, Gundlach AL. Effects of chronic silencing of relaxin-3 production in nucleus incertus neurons on food intake, body weight, anxiety-like behaviour and limbic brain activity in female rats. Psychopharmacology 2020;237:1091-106. [DOI: 10.1007/s00213-019-05439-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
11 Wykes AD, Ma S, Bathgate RAD, Gundlach AL. Targeted viral vector transduction of relaxin-3 neurons in the rat nucleus incertus using a novel cell-type specific promoter. IBRO Rep 2020;8:1-10. [PMID: 31890981 DOI: 10.1016/j.ibror.2019.11.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
12 Alnafea H, Vahkal B, Zelmer CK, Yegorov S, Bogerd J, Good SV. Japanese medaka as a model for studying the relaxin family genes involved in neuroendocrine regulation: Insights from the expression of fish-specific rln3 and insl5 and rxfp3/4-type receptor paralogues. Mol Cell Endocrinol 2019;487:2-11. [PMID: 30703485 DOI: 10.1016/j.mce.2019.01.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
13 Albert-Gasco H, Sanchez-Sarasua S, Ma S, García-Díaz C, Gundlach AL, Sanchez-Perez AM, Olucha-Bordonau FE. Central relaxin-3 receptor (RXFP3) activation impairs social recognition and modulates ERK-phosphorylation in specific GABAergic amygdala neurons. Brain Struct Funct 2019;224:453-69. [PMID: 30368554 DOI: 10.1007/s00429-018-1763-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
14 Lawther AJ, Flavell A, Ma S, Kent S, Lowry CA, Gundlach AL, Hale MW. Involvement of Serotonergic and Relaxin-3 Neuropeptide Systems in the Expression of Anxiety-like Behavior. Neuroscience 2018;390:88-103. [DOI: 10.1016/j.neuroscience.2018.08.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
15 Wang JH, Hu MJ, Shao XX, Wei D, Liu YL, Xu ZG, Guo ZY. Cholesterol modulates the binding properties of human relaxin family peptide receptor 3 with its ligands. Arch Biochem Biophys 2018;646:24-30. [PMID: 29601823 DOI: 10.1016/j.abb.2018.03.031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
16 Olucha-Bordonau FE, Albert-Gascó H, Ros-Bernal F, Rytova V, Ong-Pålsson EKE, Ma S, Sánchez-Pérez AM, Gundlach AL. Modulation of forebrain function by nucleus incertus and relaxin-3/RXFP3 signaling. CNS Neurosci Ther 2018;24:694-702. [PMID: 29722152 DOI: 10.1111/cns.12862] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
17 Zhang C, Baimoukhametova DV, Smith CM, Bains JS, Gundlach AL. Relaxin-3/RXFP3 signalling in mouse hypothalamus: no effect of RXFP3 activation on corticosterone, despite reduced presynaptic excitatory input onto paraventricular CRH neurons in vitro. Psychopharmacology (Berl) 2017;234:1725-39. [PMID: 28314951 DOI: 10.1007/s00213-017-4575-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
18 Wang JH, Shao XX, Hu MJ, Wei D, Liu YL, Xu ZG, Guo ZY. A novel BRET-based binding assay for interaction studies of relaxin family peptide receptor 3 with its ligands. Amino Acids 2017;49:895-903. [PMID: 28161795 DOI: 10.1007/s00726-017-2387-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
19 Haidar M, Guèvremont G, Zhang C, Bathgate RAD, Timofeeva E, Smith CM, Gundlach AL. Relaxin-3 inputs target hippocampal interneurons and deletion of hilar relaxin-3 receptors in "floxed-RXFP3" mice impairs spatial memory. Hippocampus 2017;27:529-46. [PMID: 28100033 DOI: 10.1002/hipo.22709] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
20 Ma S, Smith CM, Blasiak A, Gundlach AL. Distribution, physiology and pharmacology of relaxin-3/RXFP3 systems in brain. Br J Pharmacol 2017;174:1034-48. [PMID: 27774604 DOI: 10.1111/bph.13659] [Cited by in Crossref: 34] [Cited by in F6Publishing: 43] [Article Influence: 5.7] [Reference Citation Analysis]
21 Kumar JR, Rajkumar R, Jayakody T, Marwari S, Hong JM, Ma S, Gundlach AL, Lai MKP, Dawe GS. Relaxin' the brain: a case for targeting the nucleus incertus network and relaxin-3/RXFP3 system in neuropsychiatric disorders. Br J Pharmacol 2017;174:1061-76. [PMID: 27597467 DOI: 10.1111/bph.13564] [Cited by in Crossref: 27] [Cited by in F6Publishing: 35] [Article Influence: 4.5] [Reference Citation Analysis]
22 Liu Y, Zhang L, Shao XX, Hu MJ, Liu YL, Xu ZG, Guo ZY. A negatively charged transmembrane aspartate residue controls activation of the relaxin-3 receptor RXFP3. Arch Biochem Biophys 2016;604:113-20. [PMID: 27353281 DOI: 10.1016/j.abb.2016.06.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
23 Hu MJ, Shao XX, Wang JH, Wei D, Liu YL, Xu ZG, Guo ZY. Identification of hydrophobic interactions between relaxin-3 and its receptor RXFP3: implication for a conformational change in the B-chain C-terminus during receptor binding. Amino Acids 2016;48:2227-36. [PMID: 27193232 DOI: 10.1007/s00726-016-2260-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
24 Santos FN, Pereira CW, Sánchez-Pérez AM, Otero-García M, Ma S, Gundlach AL, Olucha-Bordonau FE. Comparative Distribution of Relaxin-3 Inputs and Calcium-Binding Protein-Positive Neurons in Rat Amygdala. Front Neuroanat 2016;10:36. [PMID: 27092060 DOI: 10.3389/fnana.2016.00036] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
25 Blasiak A, Siwiec M, Grabowiecka A, Blasiak T, Czerw A, Blasiak E, Kania A, Rajfur Z, Lewandowski MH, Gundlach AL. Excitatory orexinergic innervation of rat nucleus incertus--Implications for ascending arousal, motivation and feeding control. Neuropharmacology 2015;99:432-47. [PMID: 26265304 DOI: 10.1016/j.neuropharm.2015.08.014] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]