BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hosken IT, Sutton SW, Smith CM, Gundlach AL. Relaxin-3 receptor (Rxfp3) gene knockout mice display reduced running wheel activity: implications for role of relaxin-3/RXFP3 signalling in sustained arousal. Behav Brain Res 2015;278:167-75. [PMID: 25257104 DOI: 10.1016/j.bbr.2014.09.028] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Kupcova I, Danisovic L, Grgac I, Harsanyi S. Anxiety and Depression: What Do We Know of Neuropeptides? Behavioral Sciences 2022;12:262. [DOI: 10.3390/bs12080262] [Reference Citation Analysis]
2 Leysen H, Walter D, Clauwaert L, Hellemans L, van Gastel J, Vasudevan L, Martin B, Maudsley S. The Relaxin-3 Receptor, RXFP3, Is a Modulator of Aging-Related Disease. Int J Mol Sci 2022;23:4387. [PMID: 35457203 DOI: 10.3390/ijms23084387] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Lin G, Feng Y, Cai X, Zhou C, Shao L, Chen Y, Chen L, Liu Q, Zhou Q, Bathgate RAD, Yang D, Wang MW. High-Throughput Screening Campaign Identified a Potential Small Molecule RXFP3/4 Agonist. Molecules 2021;26:7511. [PMID: 34946593 DOI: 10.3390/molecules26247511] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Wong WLE, Dawe GS, Young AH. The putative role of the relaxin-3/RXFP3 system in clinical depression and anxiety: A systematic literature review. Neurosci Biobehav Rev 2021;131:429-50. [PMID: 34537263 DOI: 10.1016/j.neubiorev.2021.09.028] [Reference Citation Analysis]
5 Chang Z, He LJ, Tian DF, Gao Q, Ling JF, Wang YC, Han ZY, Guo RJ. Therapeutic Targets and Mechanism of Xingpi Jieyu Decoction in Depression: A Network Pharmacology Study. Evid Based Complement Alternat Med 2021;2021:5516525. [PMID: 34257681 DOI: 10.1155/2021/5516525] [Reference Citation Analysis]
6 Gil-Miravet I, Mañas-Ojeda A, Ros-Bernal F, Castillo-Gómez E, Albert-Gascó H, Gundlach AL, Olucha-Bordonau FE. Involvement of the Nucleus Incertus and Relaxin-3/RXFP3 Signaling System in Explicit and Implicit Memory. Front Neuroanat 2021;15:637922. [PMID: 33867946 DOI: 10.3389/fnana.2021.637922] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
7 Nasirova N, Quina LA, Morton G, Walker A, Turner EE. Mapping Cell Types and Efferent Pathways in the Ascending Relaxin-3 System of the Nucleus Incertus. eNeuro 2020;7:ENEURO. [PMID: 33055197 DOI: 10.1523/ENEURO.0272-20.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
8 Eiden LE, Gundlach AL, Grinevich V, Lee MR, Mecawi AS, Chen D, Buijs RM, Hernandez VS, Fajardo-Dolci G, Zhang L. Regulatory peptides and systems biology: A new era of translational and reverse-translational neuroendocrinology. J Neuroendocrinol 2020;32:e12844. [PMID: 32307768 DOI: 10.1111/jne.12844] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Wu R, Wang H, Lv X, Shen X, Ye G. Rapid action of mechanism investigation of Yixin Ningshen tablet in treating depression by combinatorial use of systems biology and bioinformatics tools. J Ethnopharmacol 2020;257:112827. [PMID: 32276008 DOI: 10.1016/j.jep.2020.112827] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
10 Wykes AD, Ma S, Bathgate RAD, Gundlach AL. Targeted viral vector transduction of relaxin-3 neurons in the rat nucleus incertus using a novel cell-type specific promoter. IBRO Rep 2020;8:1-10. [PMID: 31890981 DOI: 10.1016/j.ibror.2019.11.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
11 Li B, Rui J, Ding X, Chen Y, Yang X. Deciphering the multicomponent synergy mechanisms of SiNiSan prescription on irritable bowel syndrome using a bioinformatics/network topology based strategy. Phytomedicine 2019;63:152982. [DOI: 10.1016/j.phymed.2019.152982] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
12 Alnafea H, Vahkal B, Zelmer CK, Yegorov S, Bogerd J, Good SV. Japanese medaka as a model for studying the relaxin family genes involved in neuroendocrine regulation: Insights from the expression of fish-specific rln3 and insl5 and rxfp3/4-type receptor paralogues. Mol Cell Endocrinol 2019;487:2-11. [PMID: 30703485 DOI: 10.1016/j.mce.2019.01.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Haidar M, Tin K, Zhang C, Nategh M, Covita J, Wykes AD, Rogers J, Gundlach AL. Septal GABA and Glutamate Neurons Express RXFP3 mRNA and Depletion of Septal RXFP3 Impaired Spatial Search Strategy and Long-Term Reference Memory in Adult Mice. Front Neuroanat 2019;13:30. [PMID: 30906254 DOI: 10.3389/fnana.2019.00030] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
14 Contesse T, Ayrault M, Mantegazza M, Studer M, Deschaux O. Hyperactive and anxiolytic-like behaviors result from loss of COUP-TFI/Nr2f1 in the mouse cortex. Genes Brain Behav 2019;18:e12556. [PMID: 30653836 DOI: 10.1111/gbb.12556] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Sabetghadam A, Grabowiecka-nowak A, Kania A, Gugula A, Blasiak E, Blasiak T, Ma S, Gundlach AL, Blasiak A. Melanin-concentrating hormone and orexin systems in rat nucleus incertus: Dual innervation, bidirectional effects on neuron activity, and differential influences on arousal and feeding. Neuropharmacology 2018;139:238-56. [DOI: 10.1016/j.neuropharm.2018.07.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
16 Wang JH, Hu MJ, Shao XX, Wei D, Liu YL, Xu ZG, Guo ZY. Cholesterol modulates the binding properties of human relaxin family peptide receptor 3 with its ligands. Arch Biochem Biophys 2018;646:24-30. [PMID: 29601823 DOI: 10.1016/j.abb.2018.03.031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
17 Olucha-Bordonau FE, Albert-Gascó H, Ros-Bernal F, Rytova V, Ong-Pålsson EKE, Ma S, Sánchez-Pérez AM, Gundlach AL. Modulation of forebrain function by nucleus incertus and relaxin-3/RXFP3 signaling. CNS Neurosci Ther 2018;24:694-702. [PMID: 29722152 DOI: 10.1111/cns.12862] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
18 Wu M, Zhou F, Cao X, Yang J, Bai Y, Yan X, Cao J, Qi J. Abnormal circadian locomotor rhythms and Per gene expression in six-month-old triple transgenic mice model of Alzheimer's disease. Neurosci Lett 2018;676:13-8. [PMID: 29626648 DOI: 10.1016/j.neulet.2018.04.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
19 Albert-Gascó H, Ma S, Ros-Bernal F, Sánchez-Pérez AM, Gundlach AL, Olucha-Bordonau FE. GABAergic Neurons in the Rat Medial Septal Complex Express Relaxin-3 Receptor (RXFP3) mRNA. Front Neuroanat 2017;11:133. [PMID: 29403361 DOI: 10.3389/fnana.2017.00133] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
20 Blasiak A, Gundlach AL, Hess G, Lewandowski MH. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control. Front Neurosci 2017;11:127. [PMID: 28373831 DOI: 10.3389/fnins.2017.00127] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
21 Zhang C, Baimoukhametova DV, Smith CM, Bains JS, Gundlach AL. Relaxin-3/RXFP3 signalling in mouse hypothalamus: no effect of RXFP3 activation on corticosterone, despite reduced presynaptic excitatory input onto paraventricular CRH neurons in vitro. Psychopharmacology (Berl) 2017;234:1725-39. [PMID: 28314951 DOI: 10.1007/s00213-017-4575-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
22 Ma S, Smith CM, Blasiak A, Gundlach AL. Distribution, physiology and pharmacology of relaxin-3/RXFP3 systems in brain. Br J Pharmacol 2017;174:1034-48. [PMID: 27774604 DOI: 10.1111/bph.13659] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 5.7] [Reference Citation Analysis]
23 Liu Y, Zhang L, Shao XX, Hu MJ, Liu YL, Xu ZG, Guo ZY. A negatively charged transmembrane aspartate residue controls activation of the relaxin-3 receptor RXFP3. Arch Biochem Biophys 2016;604:113-20. [PMID: 27353281 DOI: 10.1016/j.abb.2016.06.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
24 Hu MJ, Shao XX, Wang JH, Wei D, Liu YL, Xu ZG, Guo ZY. Identification of hydrophobic interactions between relaxin-3 and its receptor RXFP3: implication for a conformational change in the B-chain C-terminus during receptor binding. Amino Acids 2016;48:2227-36. [PMID: 27193232 DOI: 10.1007/s00726-016-2260-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
25 Albert-Gascó H, García-Avilés Á, Moustafa S, Sánchez-Sarasua S, Gundlach AL, Olucha-Bordonau FE, Sánchez-Pérez AM. Central relaxin-3 receptor (RXFP3) activation increases ERK phosphorylation in septal cholinergic neurons and impairs spatial working memory. Brain Struct Funct 2017;222:449-63. [PMID: 27146679 DOI: 10.1007/s00429-016-1227-8] [Cited by in Crossref: 19] [Cited by in F6Publishing: 25] [Article Influence: 3.2] [Reference Citation Analysis]
26 Walker AW, Smith CM, Gundlach AL, Lawrence AJ. Relaxin-3 receptor ( Rxfp3 ) gene deletion reduces operant sucrose- but not alcohol-responding in mice: Rxfp3 gene deletion reduces operant sucrose- but not alcohol-responding in mice. Genes, Brain and Behavior 2015;14:625-34. [DOI: 10.1111/gbb.12239] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
27 Zhang C, Chua BE, Yang A, Shabanpoor F, Hossain MA, Wade JD, Rosengren KJ, Smith CM, Gundlach AL. Central relaxin-3 receptor (RXFP3) activation reduces elevated, but not basal, anxiety-like behaviour in C57BL/6J mice. Behavioural Brain Research 2015;292:125-32. [DOI: 10.1016/j.bbr.2015.06.010] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
28 Blasiak A, Siwiec M, Grabowiecka A, Blasiak T, Czerw A, Blasiak E, Kania A, Rajfur Z, Lewandowski MH, Gundlach AL. Excitatory orexinergic innervation of rat nucleus incertus--Implications for ascending arousal, motivation and feeding control. Neuropharmacology 2015;99:432-47. [PMID: 26265304 DOI: 10.1016/j.neuropharm.2015.08.014] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
29 Smith CM, Walker LL, Chua BE, McKinley MJ, Gundlach AL, Denton DA, Lawrence AJ. Involvement of central relaxin-3 signalling in sodium (salt) appetite. Exp Physiol 2015;100:1064-72. [PMID: 26147879 DOI: 10.1113/EP085349] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
30 Haidar M, Lam M, Chua BE, Smith CM, Gundlach AL. Sensitivity to Chronic Methamphetamine Administration and Withdrawal in Mice with Relaxin-3/RXFP3 Deficiency. Neurochem Res 2016;41:481-91. [PMID: 26023064 DOI: 10.1007/s11064-015-1621-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
31 Walker AW, Smith CM, Chua BE, Krstew EV, Zhang C, Gundlach AL, Lawrence AJ. Relaxin-3 receptor (RXFP3) signalling mediates stress-related alcohol preference in mice. PLoS One 2015;10:e0122504. [PMID: 25849482 DOI: 10.1371/journal.pone.0122504] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]