BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sterling ME, Karatayev O, Chang GQ, Algava DB, Leibowitz SF. Model of voluntary ethanol intake in zebrafish: effect on behavior and hypothalamic orexigenic peptides. Behav Brain Res 2015;278:29-39. [PMID: 25257106 DOI: 10.1016/j.bbr.2014.09.024] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
Number Citing Articles
1 Zabegalov KN, Kolesnikova TO, Khatsko SL, Volgin AD, Yakovlev OA, Amstislavskaya TG, Friend AJ, Bao W, Alekseeva PA, Lakstygal AM, Meshalkina DA, Demin KA, de Abreu MS, Rosemberg DB, Kalueff AV. Understanding zebrafish aggressive behavior. Behavioural Processes 2019;158:200-10. [DOI: 10.1016/j.beproc.2018.11.010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 7.7] [Reference Citation Analysis]
2 Tran S, Chow H, Tsang B, Facciol A, Gandhi P, Desai P, Gerlai R. Zebrafish Are Able to Detect Ethanol in Their Environment. Zebrafish 2017;14:126-32. [DOI: 10.1089/zeb.2016.1372] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
3 Volkoff H. The Neuroendocrine Regulation of Food Intake in Fish: A Review of Current Knowledge. Front Neurosci 2016;10:540. [PMID: 27965528 DOI: 10.3389/fnins.2016.00540] [Cited by in Crossref: 134] [Cited by in F6Publishing: 112] [Article Influence: 22.3] [Reference Citation Analysis]
4 Menezes FP, Padilha de Sousa I, Luchiari AC. Early Mistreatment Contributes to Social Behavior Disorders in Zebrafish. Front Behav Neurosci 2020;14:578242. [PMID: 33177998 DOI: 10.3389/fnbeh.2020.578242] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Barson JR, Leibowitz SF. Orexin/Hypocretin System: Role in Food and Drug Overconsumption. Int Rev Neurobiol 2017;136:199-237. [PMID: 29056152 DOI: 10.1016/bs.irn.2017.06.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
6 Tran S, Facciol A, Gerlai R. The Zebrafish, a Novel Model Organism for Screening Compounds Affecting Acute and Chronic Ethanol-Induced Effects. Animal Models for Medications Screening to Treat Addiction. Elsevier; 2016. pp. 467-84. [DOI: 10.1016/bs.irn.2016.02.016] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
7 Nathan FM, Kibat C, Goel T, Stewart J, Claridge-Chang A, Mathuru AS. Contingent stimulus delivery assay for zebrafish reveals a role for CCSER1 in alcohol preference. Addict Biol 2022;27:e13126. [PMID: 35229935 DOI: 10.1111/adb.13126] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Tang C, Zhu Y, Laziyan Y, Yang C, He C, Zuo Z. Long-term exposure to cyprodinil causes abnormal zebrafish aggressive and antipredator behavior through the hypothalamic-pituitary-interrenal axis. Aquat Toxicol 2021;241:106002. [PMID: 34717145 DOI: 10.1016/j.aquatox.2021.106002] [Reference Citation Analysis]
9 Müller TE, Fontana BD, Bertoncello KT, Franscescon F, Mezzomo NJ, Canzian J, Stefanello FV, Parker MO, Gerlai R, Rosemberg DB. Understanding the neurobiological effects of drug abuse: Lessons from zebrafish models. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2020;100:109873. [DOI: 10.1016/j.pnpbp.2020.109873] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
10 Collier AD, Halkina V, Min SS, Roberts MY, Campbell SD, Camidge K, Leibowitz SF. Embryonic Ethanol Exposure Affects the Early Development, Migration, and Location of Hypocretin/Orexin Neurons in Zebrafish. Alcohol Clin Exp Res 2019;43:1702-13. [PMID: 31206717 DOI: 10.1111/acer.14126] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
11 de Abreu MS, Giacomini AC, Genario R, dos Santos BE, da Rosa LG, Demin KA, Wappler-guzzetta EA, Kalueff AV. Neuropharmacology, pharmacogenetics and pharmacogenomics of aggression: The zebrafish model. Pharmacological Research 2019;141:602-8. [DOI: 10.1016/j.phrs.2019.01.044] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
12 Rønnestad I, Gomes AS, Murashita K, Angotzi R, Jönsson E, Volkoff H. Appetite-Controlling Endocrine Systems in Teleosts. Front Endocrinol (Lausanne) 2017;8:73. [PMID: 28458653 DOI: 10.3389/fendo.2017.00073] [Cited by in Crossref: 78] [Cited by in F6Publishing: 64] [Article Influence: 15.6] [Reference Citation Analysis]
13 Karakaya M, Macrì S, Porfiri M. Behavioral Teleporting of Individual Ethograms onto Inanimate Robots: Experiments on Social Interactions in Live Zebrafish. iScience 2020;23:101418. [PMID: 32818837 DOI: 10.1016/j.isci.2020.101418] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
14 Abreu MS, Maximino C, Banha F, Anastácio PM, Demin KA, Kalueff AV, Soares MC. Emotional behavior in aquatic organisms? Lessons from crayfish and zebrafish. J Neurosci Res 2019;98:764-79. [DOI: 10.1002/jnr.24550] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
15 Bossé GD, Peterson RT. Development of an opioid self-administration assay to study drug seeking in zebrafish. Behav Brain Res 2017;335:158-66. [PMID: 28811180 DOI: 10.1016/j.bbr.2017.08.001] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 5.2] [Reference Citation Analysis]
16 Facciol A, Gerlai R. Zebrafish Shoaling, Its Behavioral and Neurobiological Mechanisms, and Its Alteration by Embryonic Alcohol Exposure: A Review. Front Behav Neurosci 2020;14:572175. [PMID: 33100980 DOI: 10.3389/fnbeh.2020.572175] [Reference Citation Analysis]
17 Tran S, Nowicki M, Muraleetharan A, Chatterjee D, Gerlai R. Differential effects of acute administration of SCH-23390, a D₁ receptor antagonist, and of ethanol on swimming activity, anxiety-related responses, and neurochemistry of zebrafish. Psychopharmacology (Berl) 2015;232:3709-18. [PMID: 26210378 DOI: 10.1007/s00213-015-4030-y] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
18 Moorman DE. The hypocretin/orexin system as a target for excessive motivation in alcohol use disorders. Psychopharmacology (Berl) 2018;235:1663-80. [PMID: 29508004 DOI: 10.1007/s00213-018-4871-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
19 Sterling ME, Chang GQ, Karatayev O, Chang SY, Leibowitz SF. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides. Behav Brain Res 2016;304:125-38. [PMID: 26778786 DOI: 10.1016/j.bbr.2016.01.013] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
20 Tran S, Nowicki M, Fulcher N, Chatterjee D, Gerlai R. Interaction between handling induced stress and anxiolytic effects of ethanol in zebrafish: A behavioral and neurochemical analysis. Behavioural Brain Research 2016;298:278-85. [DOI: 10.1016/j.bbr.2015.10.061] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 4.3] [Reference Citation Analysis]
21 Walker LC, Lawrence AJ. The Role of Orexins/Hypocretins in Alcohol Use and Abuse. In: Lawrence AJ, de Lecea L, editors. Behavioral Neuroscience of Orexin/Hypocretin. Cham: Springer International Publishing; 2017. pp. 221-46. [DOI: 10.1007/7854_2016_55] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
22 Ariyasiri K, Choi TI, Gerlai R, Kim CH. Acute ethanol induces behavioral changes and alters c-fos expression in specific brain regions, including the mammillary body, in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2021;109:110264. [PMID: 33545226 DOI: 10.1016/j.pnpbp.2021.110264] [Reference Citation Analysis]
23 Schneider H. Zebrafish Neurobehavioral Assays for Drug Addiction Research. In: Kalueff AV, editor. The rights and wrongs of zebrafish: Behavioral phenotyping of zebrafish. Cham: Springer International Publishing; 2017. pp. 171-205. [DOI: 10.1007/978-3-319-33774-6_8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
24 Walker LC, Ch’ng SS, Lawrence AJ. Role of Lateral Hypothalamic Orexin (Hypocretin) Neurons in Alcohol Use and Abuse: Recent Advances. Curr Pharmacol Rep 2016;2:241-52. [DOI: 10.1007/s40495-016-0069-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
25 Nevárez N, de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res 2018;7:F1000 Faculty Rev-1421. [PMID: 30254737 DOI: 10.12688/f1000research.15097.1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
26 Hong X, Zha J. Fish behavior: A promising model for aquatic toxicology research. Science of The Total Environment 2019;686:311-21. [DOI: 10.1016/j.scitotenv.2019.06.028] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
27 Tao Y, Li Z, Yang Y, Jiao Y, Qu J, Wang Y, Zhang Y. Effects of common environmental endocrine-disrupting chemicals on zebrafish behavior. Water Res 2021;208:117826. [PMID: 34785404 DOI: 10.1016/j.watres.2021.117826] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
28 Tran S, Nowicki M, Muraleetharan A, Chatterjee D, Gerlai R. Neurochemical factors underlying individual differences in locomotor activity and anxiety-like behavioral responses in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2016;65:25-33. [PMID: 26316057 DOI: 10.1016/j.pnpbp.2015.08.009] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 4.4] [Reference Citation Analysis]
29 Tran S, Facciol A, Gerlai R. Home tank water versus novel water differentially affect alcohol-induced locomotor activity and anxiety related behaviours in zebrafish. Pharmacol Biochem Behav 2016;144:13-9. [PMID: 26921455 DOI: 10.1016/j.pbb.2016.02.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
30 Collier AD, Yasmin N, Khalizova N, Campbell S, Onoichenco A, Fam M, Albeg AS, Leibowitz SF. Sexually dimorphic and asymmetric effects of embryonic ethanol exposure on hypocretin/orexin neurons as related to behavioral changes in zebrafish. Sci Rep 2021;11:16078. [PMID: 34373563 DOI: 10.1038/s41598-021-95707-y] [Reference Citation Analysis]
31 James MH, Fragale JE, O'Connor SL, Zimmer BA, Aston-Jones G. The orexin (hypocretin) neuropeptide system is a target for novel therapeutics to treat cocaine use disorder with alcohol coabuse. Neuropharmacology 2021;183:108359. [PMID: 33091458 DOI: 10.1016/j.neuropharm.2020.108359] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
32 Anderson RI, Moorman DE, Becker HC. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb Exp Pharmacol 2018;248:473-503. [PMID: 29526023 DOI: 10.1007/164_2018_100] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
33 Collier AD, Min SS, Campbell SD, Roberts MY, Camidge K, Leibowitz SF. Maternal ethanol consumption before paternal fertilization: Stimulation of hypocretin neurogenesis and ethanol intake in zebrafish offspring. Prog Neuropsychopharmacol Biol Psychiatry 2020;96:109728. [PMID: 31394141 DOI: 10.1016/j.pnpbp.2019.109728] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
34 Lobao-Soares B, Eduardo-da-Silva P, Amarilha H, Pinheiro-da-Silva J, Silva PF, Luchiari AC. It's Tea Time: Interference of Ayahuasca Brew on Discriminative Learning in Zebrafish. Front Behav Neurosci 2018;12:190. [PMID: 30210319 DOI: 10.3389/fnbeh.2018.00190] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]