BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Leigh SJ, Morris MJ. Diet, inflammation and the gut microbiome: Mechanisms for obesity-associated cognitive impairment. Biochim Biophys Acta Mol Basis Dis 2020;1866:165767. [PMID: 32171891 DOI: 10.1016/j.bbadis.2020.165767] [Cited by in Crossref: 19] [Cited by in F6Publishing: 39] [Article Influence: 9.5] [Reference Citation Analysis]
Number Citing Articles
1 Feng H, Xue M, Deng H, Cheng S, Hu Y, Zhou C. Ginsenoside and Its Therapeutic Potential for Cognitive Impairment. Biomolecules 2022;12:1310. [PMID: 36139149 DOI: 10.3390/biom12091310] [Reference Citation Analysis]
2 Kumar P, Mishra J, Kumar N. Mechanistic Role of Jak3 in Obesity-Associated Cognitive Impairments. Nutrients 2022;14:3715. [PMID: 36145091 DOI: 10.3390/nu14183715] [Reference Citation Analysis]
3 Feng Y, Si X, Zhu R, Chen J, Zhao W, Wang Q, Han S, Tang M. Analysis of the Relationship between Gut Flora Levels in Childhood Obese Population and Normal Healthy Population Based on Machine Learning. Computational and Mathematical Methods in Medicine 2022;2022:1-9. [DOI: 10.1155/2022/6860940] [Reference Citation Analysis]
4 Mathew NE, Mallitt K, Masi A, Katz T, Walker AK, Morris MJ, Ooi CY. Dietary intake in children on the autism spectrum is altered and linked to differences in autistic traits and sensory processing styles. Autism Research. [DOI: 10.1002/aur.2798] [Reference Citation Analysis]
5 Yeste N, Pérez-Valle J, Heras-Molina A, Pesántez-Pacheco JL, Porrini E, González-Bulnes A, Bassols A. A High-Fat Diet Modifies Brain Neurotransmitter Profile and Hippocampal Proteome and Morphology in an IUGR Pig Model. Nutrients 2022;14:3440. [PMID: 36014946 DOI: 10.3390/nu14163440] [Reference Citation Analysis]
6 La Marra M, Ilardi CR, Villano I, Carosella M, Staiano M, Iavarone A, Chieffi S, Messina G, Polito R, Scarinci A, Monda V, Di Maio G, Messina A. Functional Relationship between Inhibitory Control, Cognitive Flexibility, Psychomotor Speed and Obesity. Brain Sciences 2022;12:1080. [DOI: 10.3390/brainsci12081080] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Samuel I, Ben-haroush Schyr R, Arad Y, Attali T, Azulai S, Bergel M, Halfon A, Hefetz L, Hirsch T, Israeli H, Lax N, Nitzan K, Sender D, Sweetat S, Okun E, Rosenmann H, Ben-zvi D. Sleeve Gastrectomy Reduces Glycemia but Does Not Affect Cognitive Impairment in Lean 5xFAD Mice. Front Neurosci 2022;16:937663. [DOI: 10.3389/fnins.2022.937663] [Reference Citation Analysis]
8 Li C, Song J, Zhao J, Wang C, Zhang C, Wang H, Zhang Q, Liu D, Ma Z, Yuan J, Dong J. The Effects of Bariatric Surgery on Cognition in Patients with Obesity: a Systematic Review and Meta-Analysis. Surgery for Obesity and Related Diseases 2022. [DOI: 10.1016/j.soard.2022.07.007] [Reference Citation Analysis]
9 Zhang Q, Jin K, Chen B, Liu R, Cheng S, Zhang Y, Lu J. Overnutrition Induced Cognitive Impairment: Insulin Resistance, Gut-Brain Axis, and Neuroinflammation. Front Neurosci 2022;16:884579. [PMID: 35873818 DOI: 10.3389/fnins.2022.884579] [Reference Citation Analysis]
10 Ziemens D, Touma C, Rappeneau V. Neurobiological Mechanisms Modulating Emotionality, Cognition and Reward-Related Behaviour in High-Fat Diet-Fed Rodents. IJMS 2022;23:7952. [DOI: 10.3390/ijms23147952] [Reference Citation Analysis]
11 Saieva S, Taglialatela G. Near-infrared light reduces glia activation and modulates neuroinflammation in the brains of diet-induced obese mice. Sci Rep 2022;12:10848. [PMID: 35761012 DOI: 10.1038/s41598-022-14812-8] [Reference Citation Analysis]
12 La Marra M, Villano I, Ilardi CR, Carosella M, Staiano M, Iavarone A, Chieffi S, Messina G, Polito R, Porro C, Scarinci A, Monda V, Carotenuto M, Di Maio G, Messina A. Executive Functions in Overweight and Obese Treatment-Seeking Patients: Cross-Sectional Data and Longitudinal Perspectives. Brain Sci 2022;12:777. [PMID: 35741662 DOI: 10.3390/brainsci12060777] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
13 Feijó GDS, Jantsch J, Correia LL, Eller S, Furtado-Filho OV, Giovenardi M, Porawski M, Braganhol E, Guedes RP. Neuroinflammatory responses following zinc or branched-chain amino acids supplementation in obese rats. Metab Brain Dis 2022. [PMID: 35556196 DOI: 10.1007/s11011-022-00996-5] [Reference Citation Analysis]
14 Harriden B, D'Cunha NM, Kellett J, Isbel S, Panagiotakos DB, Naumovski N. Are dietary patterns becoming more processed? The effects of different dietary patterns on cognition: A review. Nutr Health 2022;:2601060221094129. [PMID: 35450490 DOI: 10.1177/02601060221094129] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Ng CF. One step closer between dietary pattern and cancer prevention. Prostate Cancer Prostatic Dis 2022. [PMID: 35440641 DOI: 10.1038/s41391-022-00545-2] [Reference Citation Analysis]
16 Fan X, Zhong Y, Zhang L, Li J, Xie F, Zhang Z, Zhong J. Abdominal Obesity: An Independent Influencing Factor of Visuospatial and Executive/Language Ability and the Serum Levels of Aβ40/Aβ42/Tau Protein. Disease Markers 2022;2022:1-13. [DOI: 10.1155/2022/3622149] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Wang X, Cheng L, Liu Y, Zhang R, Wu Z, Weng P, Zhang P, Zhang X. Polysaccharide Regulation of Intestinal Flora: A Viable Approach to Maintaining Normal Cognitive Performance and Treating Depression. Front Microbiol 2022;13:807076. [DOI: 10.3389/fmicb.2022.807076] [Reference Citation Analysis]
18 Wenzel TJ, Haskey N, Kwong E, Greuel BK, Gates EJ, Gibson DL, Klegeris A. Dietary fats modulate neuroinflammation in mucin 2 knock out mice model of spontaneous colitis. Biochim Biophys Acta Mol Basis Dis 2022;1868:166336. [PMID: 34973372 DOI: 10.1016/j.bbadis.2021.166336] [Reference Citation Analysis]
19 Olsthoorn L, Vreeken D, Kiliaan AJ. Gut Microbiome, Inflammation, and Cerebrovascular Function: Link Between Obesity and Cognition. Front Neurosci 2021;15:761456. [PMID: 34938153 DOI: 10.3389/fnins.2021.761456] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
20 Song W, Song C, Li L, Wang T, Hu J, Zhu L, Yue T. Lactobacillus alleviated obesity induced by high-fat diet in mice. J Food Sci 2021;86:5439-51. [PMID: 34859434 DOI: 10.1111/1750-3841.15971] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
21 Wu J, Zhu Y, Zhou L, Lu Y, Feng T, Dai M, Liu J, Xu W, Cheng W, Sun F, Liu H, Pan W, Yang X. Parasite-Derived Excretory-Secretory Products Alleviate Gut Microbiota Dysbiosis and Improve Cognitive Impairment Induced by a High-Fat Diet. Front Immunol 2021;12:710513. [PMID: 34745091 DOI: 10.3389/fimmu.2021.710513] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
22 Nuthikattu S, Milenkovic D, Norman JE, Rutledge J, Villablanca A. Inhibition of Soluble Epoxide Hydrolase Is Protective against the Multiomic Effects of a High Glycemic Diet on Brain Microvascular Inflammation and Cognitive Dysfunction. Nutrients 2021;13:3913. [PMID: 34836168 DOI: 10.3390/nu13113913] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
23 Khade Y, Kumar AS, Maruthy K, Sasikala P. Does body mass index influence cognitive functions among young medical students? Clinical Epidemiology and Global Health 2021;12:100874. [DOI: 10.1016/j.cegh.2021.100874] [Reference Citation Analysis]
24 Leyh J, Winter K, Reinicke M, Ceglarek U, Bechmann I, Landmann J. Long-term diet-induced obesity does not lead to learning and memory impairment in adult mice. PLoS One 2021;16:e0257921. [PMID: 34587222 DOI: 10.1371/journal.pone.0257921] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
25 De Marco P, Henriques AC, Azevedo R, Sá SI, Cardoso A, Fonseca B, Barbosa J, Leal S. Gut Microbiome Composition and Metabolic Status Are Differently Affected by Early Exposure to Unhealthy Diets in a Rat Model. Nutrients 2021;13:3236. [PMID: 34579113 DOI: 10.3390/nu13093236] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
26 Więckowska-Gacek A, Mietelska-Porowska A, Wydrych M, Wojda U. Western diet as a trigger of Alzheimer's disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res Rev 2021;70:101397. [PMID: 34214643 DOI: 10.1016/j.arr.2021.101397] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 15.0] [Reference Citation Analysis]
27 Qian Y, Gao Z, Wang C, Ma J, Li G, Fu F, Guo J, Shan Y. Effects of Different Treatment Methods of Dried Citrus Peel (Chenpi) on Intestinal Microflora and Short-Chain Fatty Acids in Healthy Mice. Front Nutr 2021;8:702559. [PMID: 34434953 DOI: 10.3389/fnut.2021.702559] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
28 Berding K, Vlckova K, Marx W, Schellekens H, Stanton C, Clarke G, Jacka F, Dinan TG, Cryan JF. Diet and the Microbiota-Gut-Brain Axis: Sowing the Seeds of Good Mental Health. Adv Nutr 2021;12:1239-85. [PMID: 33693453 DOI: 10.1093/advances/nmaa181] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 22.0] [Reference Citation Analysis]
29 Jia PP, Junaid M, Wen PP, Yang YF, Li WG, Yang XG, Pei DS. Role of germ-free animal models in understanding interactions of gut microbiota to host and environmental health: A special reference to zebrafish. Environ Pollut 2021;279:116925. [PMID: 33744636 DOI: 10.1016/j.envpol.2021.116925] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
30 Muth AK, Park SQ. The impact of dietary macronutrient intake on cognitive function and the brain. Clin Nutr 2021;40:3999-4010. [PMID: 34139473 DOI: 10.1016/j.clnu.2021.04.043] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
31 Wiȩckowska-Gacek A, Mietelska-Porowska A, Chutorański D, Wydrych M, Długosz J, Wojda U. Western Diet Induces Impairment of Liver-Brain Axis Accelerating Neuroinflammation and Amyloid Pathology in Alzheimer's Disease. Front Aging Neurosci 2021;13:654509. [PMID: 33867971 DOI: 10.3389/fnagi.2021.654509] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
32 Botelho J, Leira Y, Viana J, Machado V, Lyra P, Aldrey JM, Pías-Peleteiro JM, Blanco J, Sobrino T, Mendes JJ. The Role of Inflammatory Diet and Vitamin D on the Link between Periodontitis and Cognitive Function: A Mediation Analysis in Older Adults. Nutrients 2021;13:924. [PMID: 33809193 DOI: 10.3390/nu13030924] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
33 Lee SY, Yuk HG, Ko SG, Cho SG, Moon GS. Gut Microbiome Prolongs an Inhibitory Effect of Korean Red Ginseng on High-Fat-Diet-Induced Mouse Obesity. Nutrients 2021;13:926. [PMID: 33809267 DOI: 10.3390/nu13030926] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
34 Bhargava A, Arnold AP, Bangasser DA, Denton KM, Gupta A, Hilliard Krause LM, Mayer EA, McCarthy M, Miller WL, Raznahan A, Verma R. Considering Sex as a Biological Variable in Basic and Clinical Studies: An Endocrine Society Scientific Statement. Endocr Rev 2021;42:219-58. [PMID: 33704446 DOI: 10.1210/endrev/bnaa034] [Cited by in Crossref: 6] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
35 Berding K, Carbia C, Cryan JF. Going with the grain: Fiber, cognition, and the microbiota-gut-brain-axis. Exp Biol Med (Maywood) 2021;246:796-811. [PMID: 33641478 DOI: 10.1177/1535370221995785] [Cited by in Crossref: 3] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
36 Silva V, Palacios-Muñoz A, Okray Z, Adair KL, Waddell S, Douglas AE, Ewer J. The impact of the gut microbiome on memory and sleep in Drosophila. J Exp Biol 2021;224:jeb233619. [PMID: 33376141 DOI: 10.1242/jeb.233619] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
37 D'Antongiovanni V, Fornai M, Pellegrini C, Blandizzi C, Antonioli L. Managing Obesity and Related Comorbidities: A Potential Pharmacological Target in the Adenosine System? Front Pharmacol 2020;11:621955. [PMID: 33536924 DOI: 10.3389/fphar.2020.621955] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Shields GS, Deer LK, Hastings PD, Hostinar CE. Adiposity, Inflammation, and Working Memory: Evidence for a Vicious Cycle. Brain Behav Immun Health 2021;13:100202. [PMID: 33899030 DOI: 10.1016/j.bbih.2021.100202] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
39 Wang J, Wang A, Zhao X. Relationship Among Inflammation, Overweight Status, and Cognitive Impairment in a Community-Based Population of Chinese Adults. Front Neurol 2020;11:594786. [PMID: 33363509 DOI: 10.3389/fneur.2020.594786] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Xu L, Qu C, Qu C, Shen J, Song H, Li Y, Li T, Zheng J, Zhang J. Improvement of autophagy dysfunction as a potential mechanism for environmental enrichment to protect blood-brain barrier in rats with vascular cognitive impairment. Neurosci Lett 2020;739:135437. [PMID: 33132180 DOI: 10.1016/j.neulet.2020.135437] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
41 Sakhaie N, Sadegzadeh F, Mohammadnia A, Dadkhah M, Saadati H. Sex‐dependent effects of postweaning exposure to an enriched environment on novel objective recognition memory and anxiety‐like behaviors: The role of hippocampal BDNF level. Int j dev neurosci 2020;80:396-408. [DOI: 10.1002/jdn.10038] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]