BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lu QB, Wang HP, Tang ZH, Cheng H, Du Q, Wang YB, Feng WB, Li KX, Cai WW, Qiu LY, Sun HJ. Nesfatin-1 functions as a switch for phenotype transformation and proliferation of VSMCs in hypertensive vascular remodeling. Biochim Biophys Acta Mol Basis Dis. 2018;1864:2154-2168. [PMID: 29627363 DOI: 10.1016/j.bbadis.2018.04.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 36] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Zhang X, Jing G, Qi L, Ma M, Li L, Shen N, Guo Z, Gao X, Li L. Identification of Molecular Mechanism of OSA with Hypertension Based on Multiple Microarray Analysis. Mathematical Problems in Engineering 2022;2022:1-12. [DOI: 10.1155/2022/1257400] [Reference Citation Analysis]
2 Rakhshan K, Dalouchi F, Sharifiaghdam Z, Safaei A, Jahanshahi F, Azizi Y. Modulation of Apoptosis and Oxidative Stress with Nesfatin-1 in Doxorubicin Induced Cardiotoxicity in Male Rat. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-022-10429-7] [Reference Citation Analysis]
3 Sun S, Chen Q, Wu B, Huang Q, Maimaitijiang A. RAGE Regulating Vascular Remodeling in Diabetes by Regulating Mitochondrial Dynamics with JAK2/STAT3 Pathway. Comput Intell Neurosci 2022;2022:2685648. [PMID: 35498181 DOI: 10.1155/2022/2685648] [Reference Citation Analysis]
4 Chen X, Dong J, Jiao Q, Du X, Bi M, Jiang H. "Sibling" battle or harmony: crosstalk between nesfatin-1 and ghrelin. Cell Mol Life Sci 2022;79:169. [PMID: 35239020 DOI: 10.1007/s00018-022-04193-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zhou W, Wang W, Yuan X, Xiao C, Xing Y, Ye S, Liu Q, Tong Q. The Effects of RBP4 and Vitamin D on the Proliferation and Migration of Vascular Smooth Muscle Cells via the JAK2/STAT3 Signaling Pathway. Oxidative Medicine and Cellular Longevity 2022;2022:1-23. [DOI: 10.1155/2022/3046777] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Peng H, Zhou L, Li H, Zhang Y, Cheng S, Chen Z, Yu S, Hu S, Chen W, Yang MO, Xue J, Zeng W. The therapeutic effect and mechanism of Rapamycin combined with HO-3867 on monocrotaline-induced pulmonary hypertension in rats. Eur J Pharm Sci 2021;:106102. [PMID: 34958883 DOI: 10.1016/j.ejps.2021.106102] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Chen XY, Yang LP, Zheng YL, Li YX, Zhong DL, Jin RJ, Li J. Electroacupuncture Attenuated Phenotype Transformation of Vascular Smooth Muscle Cells via PI3K/Akt and MAPK Signaling Pathways in Spontaneous Hypertensive Rats. Chin J Integr Med 2021. [PMID: 34839455 DOI: 10.1007/s11655-021-2883-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Tang HX, Lin J, Xu CB, Chen G, Liao YJ, Lei NR, Li J. Minimally modified low-density lipoprotein upregulates mouse mesenteric arterial 5-HT1B receptor in vivo via activation of the JAK2/STAT3 pathway. Microvasc Res 2021;139:104260. [PMID: 34624308 DOI: 10.1016/j.mvr.2021.104260] [Reference Citation Analysis]
9 Rupp SK, Wölk E, Stengel A. Nesfatin-1 Receptor: Distribution, Signaling and Increasing Evidence for a G Protein-Coupled Receptor - A Systematic Review. Front Endocrinol (Lausanne) 2021;12:740174. [PMID: 34566899 DOI: 10.3389/fendo.2021.740174] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
10 Dotania K, Tripathy M, Rai U. A comparative account of nesfatin-1 in vertebrates. Gen Comp Endocrinol 2021;312:113874. [PMID: 34331938 DOI: 10.1016/j.ygcen.2021.113874] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Bhat OM, Yuan X, Kukreja RC, Li PL. Regulatory role of mammalian target of rapamycin signaling in exosome secretion and osteogenic changes in smooth muscle cells lacking acid ceramidase gene. FASEB J 2021;35:e21732. [PMID: 34143450 DOI: 10.1096/fj.202100385R] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
12 Su RY, Geng XY, Yang Y, Yin HS. Nesfatin-1 inhibits myocardial ischaemia/reperfusion injury through activating Akt/ERK pathway-dependent attenuation of endoplasmic reticulum stress. J Cell Mol Med 2021;25:5050-9. [PMID: 33939297 DOI: 10.1111/jcmm.16481] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
13 Yu J, Li W, Zhao L, Qiao Y, Yu J, Huang Q, Yang Y, Xiao X, Guo D. Quyu Shengxin capsule (QSC) inhibits Ang-II-induced abnormal proliferation of VSMCs by down-regulating TGF-β, VEGF, mTOR and JAK-STAT pathways. J Ethnopharmacol 2021;275:114112. [PMID: 33905820 DOI: 10.1016/j.jep.2021.114112] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Wang T, Xie L, Bi H, Li Y, Li Y, Zhao J. Urantide alleviates the symptoms of atherosclerotic rats in vivo and in vitro models through the JAK2/STAT3 signaling pathway. Eur J Pharmacol 2021;902:174037. [PMID: 33891969 DOI: 10.1016/j.ejphar.2021.174037] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Zhou W, Ye SD, Wang W. Elevated retinol binding protein 4 levels are associated with atherosclerosis in diabetic rats via JAK2/STAT3 signaling pathway. World J Diabetes 2021; 12(4): 466-479 [PMID: 33889291 DOI: 10.4239/wjd.v12.i4.466] [Cited by in CrossRef: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
16 Zhang W, Wang Q, Xing X, Yang L, Xu M, Cao C, Wang R, Li W, Niu X, Gao D. The antagonistic effects and mechanisms of microRNA-26a action in hypertensive vascular remodelling. Br J Pharmacol 2021;178:1037-54. [PMID: 33305374 DOI: 10.1111/bph.15337] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Xu K, Zhang Z, Chen M, Moqbel SAA, He Y, Ma C, Jiang L, Xiong Y, Wu L. Nesfatin-1 Promotes the Osteogenic Differentiation of Tendon-Derived Stem Cells and the Pathogenesis of Heterotopic Ossification in Rat Tendons via the mTOR Pathway. Front Cell Dev Biol 2020;8:547342. [PMID: 33344440 DOI: 10.3389/fcell.2020.547342] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
18 You Y, Guo Y, Jia P, Zhuang B, Cheng Y, Deng H, Wang X, Zhang C, Luo S, Huang B. Ketogenic diet aggravates cardiac remodeling in adult spontaneously hypertensive rats. Nutr Metab (Lond) 2020;17:91. [PMID: 33117428 DOI: 10.1186/s12986-020-00510-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
19 Zhang J, Sun H. MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction. Hypertens Res 2021;44:129-46. [DOI: 10.1038/s41440-020-00553-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
20 Zhang JR, Sun HJ. Extracellular Vesicle-Mediated Vascular Cell Communications in Hypertension: Mechanism Insights and Therapeutic Potential of ncRNAs. Cardiovasc Drugs Ther 2020. [PMID: 32964302 DOI: 10.1007/s10557-020-07080-z] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
21 Qi Y, Liang X, Dai F, Guan H, Sun J, Yao W. RhoA/ROCK Pathway Activation is Regulated by AT1 Receptor and Participates in Smooth Muscle Migration and Dedifferentiation via Promoting Actin Cytoskeleton Polymerization. Int J Mol Sci 2020;21:E5398. [PMID: 32751352 DOI: 10.3390/ijms21155398] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Guo Y, Wang X, Jia P, You Y, Cheng Y, Deng H, Luo S, Huang B. Ketogenic diet aggravates hypertension via NF-κB-mediated endothelial dysfunction in spontaneously hypertensive rats. Life Sci 2020;258:118124. [PMID: 32702443 DOI: 10.1016/j.lfs.2020.118124] [Cited by in Crossref: 3] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
23 Zhang Y, You S, Tian Y, Lu S, Cao L, Sun Y, Zhang N. WWP2 regulates SIRT1-STAT3 acetylation and phosphorylation involved in hypertensive angiopathy. J Cell Mol Med 2020;24:9041-54. [PMID: 32627301 DOI: 10.1111/jcmm.15538] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
24 Li W, Niu X, Yu J, Xiao X, Zang L, Zhao J, Huang Q, Li W. Imperatorin alleviates the abnormal proliferation, migration, and foaming of ox-LDL-induced VSMCs through regulating PI3K/Akt/mTOR signaling pathway. Journal of Functional Foods 2020;70:103982. [DOI: 10.1016/j.jff.2020.103982] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
25 Tang HX, Qin XP, Li J. Role of the signal transducer and activator of transcription 3 protein in the proliferation of vascular smooth muscle cells. Vascular 2020;28:821-8. [PMID: 32486969 DOI: 10.1177/1708538120929504] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Zhang R, Jiang M, Zhang J, Qiu Y, Li D, Li S, Liu J, Liu C, Fang Z, Cao F. Regulation of the cerebrovascular smooth muscle cell phenotype by mitochondrial oxidative injury and endoplasmic reticulum stress in simulated microgravity rats via the PERK-eIF2α-ATF4-CHOP pathway. Biochim Biophys Acta Mol Basis Dis 2020;1866:165799. [PMID: 32304741 DOI: 10.1016/j.bbadis.2020.165799] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
27 Wu HB, Wang ZW, Shi F, Ren ZL, Li LC, Hu XP, Hu R, Li BW. Avβ3 single-stranded DNA aptamer attenuates vascular restenosis via Ras-PI3K/MAPK pathway in rats after percutaneous transluminal coronary angioplasty. Artif Organs 2020;44:611-9. [PMID: 31879964 DOI: 10.1111/aor.13622] [Reference Citation Analysis]
28 Wu HB, Wang ZW, Shi F, Ren ZL, Li LC, Hu XP, Hu R, Li BW. Avβ3 Single-Stranded DNA Aptamer Attenuates Vascular Smooth Muscle Cell Proliferation and Migration via Ras-PI3K/MAPK Pathway. Cardiovasc Ther 2020;2020:6869856. [PMID: 32042311 DOI: 10.1155/2020/6869856] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
29 Wang X, Li D, Chen H, Wei X, Xu X. Expression of Long Noncoding RNA LIPCAR Promotes Cell Proliferation, Cell Migration, and Change in Phenotype of Vascular Smooth Muscle Cells. Med Sci Monit 2019;25:7645-51. [PMID: 31603865 DOI: 10.12659/MSM.915681] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
30 Güneş H, Alkan Baylan F, Güneş H, Temiz F. Can Nesfatin-1 Predict Hypertension in Obese Children? J Clin Res Pediatr Endocrinol 2020;12:29-36. [PMID: 31339256 DOI: 10.4274/jcrpe.galenos.2019.2019.0072] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Mori Y, Shimizu H, Kushima H, Saito T, Hiromura M, Terasaki M, Koshibu M, Ohtaki H, Hirano T. Nesfatin-1 suppresses peripheral arterial remodeling without elevating blood pressure in mice. Endocr Connect 2019;8:536-46. [PMID: 30939447 DOI: 10.1530/EC-19-0120] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Tang Y, Huang Q, Liu C, Ou H, Huang D, Peng F, Liu C, Mo Z. p22phox promotes Ang-II-induced vascular smooth muscle cell phenotypic switch by regulating KLF4 expression. Biochem Biophys Res Commun 2019;514:280-6. [PMID: 31030942 DOI: 10.1016/j.bbrc.2019.04.128] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
33 Cui C, Wang X, Shang XM, Li L, Ma Y, Zhao GY, Song YX, Geng XB, Zhao BQ, Tian MR, Wang HL. lncRNA 430945 promotes the proliferation and migration of vascular smooth muscle cells via the ROR2/RhoA signaling pathway in atherosclerosis. Mol Med Rep 2019;19:4663-72. [PMID: 30957191 DOI: 10.3892/mmr.2019.10137] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
34 Fang G, Qi J, Huang L, Zhao X. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension. Biosci Rep 2019;39:BSR20182229. [PMID: 30833363 DOI: 10.1042/BSR20182229] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
35 Ibe S, Kishimoto Y, Niki H, Saita E, Umei T, Miura K, Ikegami Y, Ohmori R, Kondo K, Momiyama Y. Associations between plasma nesfatin-1 levels and the presence and severity of coronary artery disease. Heart Vessels 2019;34:965-70. [PMID: 30599062 DOI: 10.1007/s00380-018-01328-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
36 Schalla MA, Stengel A. Current Understanding of the Role of Nesfatin-1. J Endocr Soc 2018;2:1188-206. [PMID: 30302423 DOI: 10.1210/js.2018-00246] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 11.5] [Reference Citation Analysis]