BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen L, Liu T, Zhao X. Inferring anatomical therapeutic chemical (ATC) class of drugs using shortest path and random walk with restart algorithms. Biochim Biophys Acta Mol Basis Dis 2018;1864:2228-40. [PMID: 29247833 DOI: 10.1016/j.bbadis.2017.12.019] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 5.6] [Reference Citation Analysis]
Number Citing Articles
1 Cao Y, Yang ZQ, Zhang XL, Fan W, Wang Y, Shen J, Wei DQ, Li Q, Wei XY. Identifying the kind behind SMILES-anatomical therapeutic chemical classification using structure-only representations. Brief Bioinform 2022:bbac346. [PMID: 36027578 DOI: 10.1093/bib/bbac346] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Zhao Z, Meng J, Li Y. Complex Pattern Recognition and Understanding Model in English Linguistics based on Random Walk and Measure Analysis Algorithm. 2022 International Conference on Inventive Computation Technologies (ICICT) 2022. [DOI: 10.1109/icict54344.2022.9850630] [Reference Citation Analysis]
3 Wu Z, Chen L, Karaman R. Similarity-Based Method with Multiple-Feature Sampling for Predicting Drug Side Effects. Computational and Mathematical Methods in Medicine 2022;2022:1-13. [DOI: 10.1155/2022/9547317] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
4 Yu Z, Wu Z, Li W, Liu G, Tang Y. ADENet: a novel network-based inference method for prediction of drug adverse events. Brief Bioinform 2022:bbab580. [PMID: 35039845 DOI: 10.1093/bib/bbab580] [Reference Citation Analysis]
5 Jiang M, Zhou B, Chen L. . MBE 2022;19:5754-71. [DOI: 10.3934/mbe.2022269] [Reference Citation Analysis]
6 Das P, Hussain Mazumder D. Predicting Anatomical Therapeutic Chemical Drug Classes from 17 molecules’ Properties of Drugs by Multi-Label Binary Relevance Approach with MLSMOTE. 2021 5th International Conference on Computational Biology and Bioinformatics 2021. [DOI: 10.1145/3512452.3512453] [Reference Citation Analysis]
7 Sheng M, Cai H, Yang Q, Li J, Zhang J, Liu L. A Random Walk-Based Method to Identify Candidate Genes Associated With Lymphoma. Front Genet 2021;12:792754. [PMID: 34899868 DOI: 10.3389/fgene.2021.792754] [Reference Citation Analysis]
8 Aryanfar A, Medlej S, Tarhini A, Damadi SR, Tehrani B. AR, Goddard Iii WA. 3D percolation modeling for predicting the thermal conductivity of graphene-polymer composites. Computational Materials Science 2021;197:110650. [DOI: 10.1016/j.commatsci.2021.110650] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
9 Wang X, Liu M, Zhang Y, He S, Qin C, Li Y, Lu T. Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery. Brief Bioinform 2021:bbab289. [PMID: 34368838 DOI: 10.1093/bib/bbab289] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Aryanfar A, Medlej S, Tarhini A, Tehrani B AR. Elliptic percolation model for predicting the electrical conductivity of graphene-polymer composites. Soft Matter 2021;17:2081-9. [PMID: 33439207 DOI: 10.1039/d0sm01950j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
11 Liang H, Hu B, Chen L, Wang S, Aorigele. Recognizing novel chemicals/drugs for anatomical therapeutic chemical classes with a heat diffusion algorithm. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2020;1866:165910. [DOI: 10.1016/j.bbadis.2020.165910] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
12 Zhao R, Hu B, Chen L, Zhou B. Identification of Latent Oncogenes with a Network Embedding Method and Random Forest. Biomed Res Int 2020;2020:5160396. [PMID: 33029511 DOI: 10.1155/2020/5160396] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Zhou JP, Chen L, Guo ZH. iATC-NRAKEL: an efficient multi-label classifier for recognizing anatomical therapeutic chemical classes of drugs. Bioinformatics 2020;36:1391-6. [PMID: 31593226 DOI: 10.1093/bioinformatics/btz757] [Cited by in Crossref: 38] [Cited by in F6Publishing: 49] [Article Influence: 19.0] [Reference Citation Analysis]
14 Zhang X, Chen L. Prediction of membrane protein types by fusing protein-protein interaction and protein sequence information. Biochim Biophys Acta Proteins Proteom 2020;1868:140524. [PMID: 32858174 DOI: 10.1016/j.bbapap.2020.140524] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
15 Zhang Y, Zeng T, Chen L, Ding S, Huang T, Cai YD. Identification of COVID-19 Infection-Related Human Genes Based on a Random Walk Model in a Virus-Human Protein Interaction Network. Biomed Res Int 2020;2020:4256301. [PMID: 32685484 DOI: 10.1155/2020/4256301] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
16 Zhou B, Zhao X, Lu J, Sun Z, Liu M, Zhou Y, Liu R, Wang Y. Relating Substructures and Side Effects of Drugs with Chemical-chemical Interactions. CCHTS 2020;23:285-94. [DOI: 10.2174/1386207322666190702102752] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Che J, Chen L, Guo Z, Wang S, Aorigele. Drug Target Group Prediction with Multiple Drug Networks. CCHTS 2020;23:274-84. [DOI: 10.2174/1386207322666190702103927] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
18 Liang H, Chen L, Zhao X, Zhang X. Prediction of Drug Side Effects with a Refined Negative Sample Selection Strategy. Comput Math Methods Med 2020;2020:1573543. [PMID: 32454877 DOI: 10.1155/2020/1573543] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 22.0] [Reference Citation Analysis]
19 Zhao Y, Zhao P, Liang H, Zhang X. Identifying Genes Associated With Autism Spectrum Disorders by Random Walk Method With Significance Tests. IEEE Access 2020;8:156686-156694. [DOI: 10.1109/access.2020.3019516] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Jo J, Choi H, Yoon S. Prediction of Drug Classes with a Deep Neural Network using Drug Targets and Chemical Structure Data. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2019. [DOI: 10.1109/bibm47256.2019.8983104] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
21 Chen L, Zhang YH, Huang G, Pan X, Huang T, Cai YD. Inferring novel genes related to oral cancer with a network embedding method and one-class learning algorithms. Gene Ther 2019;26:465-78. [PMID: 31455874 DOI: 10.1038/s41434-019-0099-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
22 Lu S, Zhu ZG, Lu WC. Inferring novel genes related to colorectal cancer via random walk with restart algorithm. Gene Ther 2019;26:373-85. [PMID: 31308477 DOI: 10.1038/s41434-019-0090-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
23 Wang T, Chen L, Zhao X. Prediction of Drug Combinations with a Network Embedding Method. CCHTS 2019;21:789-97. [DOI: 10.2174/1386207322666181226170140] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
24 Lu S, Zhao K, Wang X, Liu H, Ainiwaer X, Xu Y, Ye M. Use of Laplacian Heat Diffusion Algorithm to Infer Novel Genes With Functions Related to Uveitis. Front Genet 2018;9:425. [PMID: 30349554 DOI: 10.3389/fgene.2018.00425] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
25 Zhao X, Chen L, Lu J. A similarity-based method for prediction of drug side effects with heterogeneous information. Math Biosci 2018;306:136-44. [PMID: 30296417 DOI: 10.1016/j.mbs.2018.09.010] [Cited by in Crossref: 104] [Cited by in F6Publishing: 83] [Article Influence: 26.0] [Reference Citation Analysis]
26 Chen L, Zhang YH, Zhang Z, Huang T, Cai YD. Inferring Novel Tumor Suppressor Genes with a Protein-Protein Interaction Network and Network Diffusion Algorithms. Mol Ther Methods Clin Dev 2018;10:57-67. [PMID: 30069494 DOI: 10.1016/j.omtm.2018.06.007] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]