1 |
Fernández A, Martínez-Ramírez C, Gómez A, de Diego AMG, Gandía L, Casarejos MJ, García AG. Mitochondrial dysfunction in chromaffin cells from the R6/1 mouse model of Huntington's disease: Impact on exocytosis and calcium current regulation. Neurobiol Dis 2023;179:106046. [PMID: 36806818 DOI: 10.1016/j.nbd.2023.106046] [Reference Citation Analysis]
|
2 |
Burtscher J, Pepe G, Maharjan N, Riguet N, Di Pardo A, Maglione V, Millet GP. Sphingolipids and impaired hypoxic stress responses in Huntington disease. Prog Lipid Res 2023;90:101224. [PMID: 36898481 DOI: 10.1016/j.plipres.2023.101224] [Reference Citation Analysis]
|
3 |
Zhang S, Cheng Y, Shang H. The updated development of blood-based biomarkers for Huntington's disease. J Neurol 2023;:1-21. [PMID: 36692635 DOI: 10.1007/s00415-023-11572-x] [Reference Citation Analysis]
|
4 |
Pepe G, Capocci L, Marracino F, Realini N, Lenzi P, Martinello K, Bovier TF, Bichell TJ, Scarselli P, Di Cicco C, Bowman AB, Digilio FA, Fucile S, Fornai F, Armirotti A, Parlato R, Di Pardo A, Maglione V. Treatment with THI, an inhibitor of sphingosine-1-phosphate lyase, modulates glycosphingolipid metabolism and results therapeutically effective in experimental models of Huntington's disease. Mol Ther 2023;31:282-99. [PMID: 36116006 DOI: 10.1016/j.ymthe.2022.09.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
5 |
Donnelly KM, Coleman CM, Fuller ML, Reed VL, Smerina D, Tomlinson DS, Pearce MMP. Hunting for the cause: Evidence for prion-like mechanisms in Huntington’s disease. Front Neurosci 2022;16:946822. [DOI: 10.3389/fnins.2022.946822] [Reference Citation Analysis]
|
6 |
Ananbeh H, Novak J, Juhas S, Juhasova J, Klempir J, Doleckova K, Rysankova I, Turnovcova K, Hanus J, Hansikova H, Vodicka P, Kupcova Skalnikova H. Huntingtin Co-Isolates with Small Extracellular Vesicles from Blood Plasma of TgHD and KI-HD Pig Models of Huntington's Disease and Human Blood Plasma. Int J Mol Sci 2022;23:5598. [PMID: 35628406 DOI: 10.3390/ijms23105598] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
7 |
Rai M, Curley M, Coleman Z, Demontis F. Contribution of proteases to the hallmarks of aging and to age-related neurodegeneration. Aging Cell 2022;21:e13603. [PMID: 35349763 DOI: 10.1111/acel.13603] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
8 |
Rai M, Demontis F. Muscle-to-Brain Signaling Via Myokines and Myometabolites. BPL 2022. [DOI: 10.3233/bpl-210133] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
9 |
Loy CT, Hannan AJ. Neurotoxicity in Huntington Disease. Handbook of Neurotoxicity 2022. [DOI: 10.1007/978-3-030-71519-9_140-1] [Reference Citation Analysis]
|
10 |
Loy CT, Hannan AJ. Neurotoxicity in Huntington Disease. Handbook of Neurotoxicity 2022. [DOI: 10.1007/978-3-031-15080-7_140] [Reference Citation Analysis]
|
11 |
Sabnis RW. Novel Substituted Heteroaryl Compounds for Treating Huntington's Disease. ACS Med Chem Lett 2021;12:1881-2. [PMID: 34917244 DOI: 10.1021/acsmedchemlett.1c00607] [Reference Citation Analysis]
|
12 |
Burtscher J, Pepe G, Marracino F, Capocci L, Giova S, Millet GP, Di Pardo A, Maglione V. Brain Region and Cell Compartment Dependent Regulation of Electron Transport System Components in Huntington's Disease Model Mice. Brain Sci 2021;11:1267. [PMID: 34679332 DOI: 10.3390/brainsci11101267] [Reference Citation Analysis]
|