BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen L, Tsui MM, Shi Q, Hu C, Wang Q, Zhou B, Lam PK, Lam JC. Accumulation of perfluorobutane sulfonate (PFBS) and impairment of visual function in the eyes of marine medaka after a life-cycle exposure. Aquatic Toxicology 2018;201:1-10. [DOI: 10.1016/j.aquatox.2018.05.018] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Shen C, Cai Y, Li J, He C, Zuo Z. Mepanipyrim induces visual developmental toxicity and vision-guided behavioral alteration in zebrafish larvae. Journal of Environmental Sciences 2023;124:76-88. [DOI: 10.1016/j.jes.2021.11.008] [Reference Citation Analysis]
2 Wu L, Zeeshan M, Dang Y, Liang L, Gong Y, Li Q, Tan Y, Fan Y, Lin L, Zhou Y, Liu R, Hu L, Yang B, Zeng X, Yu Y, Dong G. Environmentally relevant concentrations of F–53B induce eye development disorders-mediated locomotor behavior in zebrafish larvae. Chemosphere 2022. [DOI: 10.1016/j.chemosphere.2022.136130] [Reference Citation Analysis]
3 Xiao J, Huang J, Wang Y, Qian X, Cao M. Evaluation of the ecological impacts of short- and long-chain perfluoroalkyl acids on constructed wetland systems: Perfluorobutyric acid and perfluorooctanoic acid. Journal of Hazardous Materials 2022;435:128863. [DOI: 10.1016/j.jhazmat.2022.128863] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Wang Q, Ruan Y, Jin L, Lin H, Yan M, Gu J, Yuen CNT, Leung KMY, Lam PKS. Tissue-Specific Uptake, Depuration Kinetics, and Suspected Metabolites of Three Emerging Per- and Polyfluoroalkyl Substances (PFASs) in Marine Medaka. Environ Sci Technol 2022;56:6182-91. [PMID: 35438980 DOI: 10.1021/acs.est.1c07643] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Sun G, Li Y. Molecular mechanisms of developmental toxicity induced by BBP in zebrafish embryos. Toxicology 2021;466:153078. [PMID: 34933018 DOI: 10.1016/j.tox.2021.153078] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Bernardini I, Matozzo V, Valsecchi S, Peruzza L, Rovere GD, Polesello S, Iori S, Marin MG, Fabrello J, Ciscato M, Masiero L, Bonato M, Santovito G, Boffo L, Bargelloni L, Milan M, Patarnello T. The new PFAS C6O4 and its effects on marine invertebrates: First evidence of transcriptional and microbiota changes in the Manila clam Ruditapes philippinarum. Environment International 2021;152:106484. [DOI: 10.1016/j.envint.2021.106484] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Huang C, Zhang J, Hu G, Zhang L, Chen H, Wei D, Cai D, Yu Y, Li X, Ding P, Li J. Characterization of the distribution, source, and potential ecological risk of perfluorinated alkyl substances (PFASs) in the inland river basin of Longgang District, South China. Environ Pollut 2021;287:117642. [PMID: 34182383 DOI: 10.1016/j.envpol.2021.117642] [Reference Citation Analysis]
8 Chowdhury MI, Sana T, Panneerselvan L, Dharmarajan R, Megharaj M. Acute Toxicity and Transgenerational Effects of Perfluorobutane Sulfonate on Caenorhabditis elegans. Environ Toxicol Chem 2021;40:1973-82. [PMID: 33792982 DOI: 10.1002/etc.5055] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
9 Tang L, Liu M, Hu C, Zhou B, Lam PK, Lam JC, Chen L. Binary exposure to hypoxia and perfluorobutane sulfonate disturbs sensory perception and chromatin topography in marine medaka embryos. Environmental Pollution 2020;266:115284. [DOI: 10.1016/j.envpol.2020.115284] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
10 Hu C, Tang L, Liu M, Lam PK, Lam JC, Chen L. Probiotic modulation of perfluorobutanesulfonate toxicity in zebrafish: Disturbances in retinoid metabolism and visual physiology. Chemosphere 2020;258:127409. [DOI: 10.1016/j.chemosphere.2020.127409] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
11 Hu Y, Wei C, Wang L, Zhou Z, Wang T, Liu G, Feng Y, Liang Y. Cooking methods affect the intake of per- and polyfluoroalkyl substances (PFASs) from grass carp. Ecotoxicol Environ Saf 2020;203:111003. [PMID: 32678765 DOI: 10.1016/j.ecoenv.2020.111003] [Reference Citation Analysis]
12 Liu M, Song S, Hu C, Tang L, Lam JC, Lam PK, Chen L. Dietary administration of probiotic Lactobacillus rhamnosus modulates the neurological toxicities of perfluorobutanesulfonate in zebrafish. Environmental Pollution 2020;265:114832. [DOI: 10.1016/j.envpol.2020.114832] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
13 Tang L, Song S, Hu C, Liu M, Lam PK, Zhou B, Lam JC, Chen L. Parental exposure to perfluorobutane sulfonate disturbs the transfer of maternal transcripts and offspring embryonic development in zebrafish. Chemosphere 2020;256:127169. [DOI: 10.1016/j.chemosphere.2020.127169] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Li M, Yang T, Gao L, Xu H. An inadvertent issue of human retina exposure to endocrine disrupting chemicals: A safety assessment. Chemosphere 2021;264:128484. [PMID: 33022499 DOI: 10.1016/j.chemosphere.2020.128484] [Reference Citation Analysis]
15 Foguth R, Hoskins T, Clark G, Nelson M, Flynn R, de Perre C, Hoverman J, Lee L, Sepúlveda M, Cannon J. Single and mixture per- and polyfluoroalkyl substances accumulate in developing Northern leopard frog brains and produce complex neurotransmission alterations. Neurotoxicology and Teratology 2020;81:106907. [DOI: 10.1016/j.ntt.2020.106907] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
16 Yue Y, Li S, Qian Z, Pereira RF, Lee J, Doherty JJ, Zhang Z, Peng Y, Clark JM, Timme-Laragy AR, Park Y. Perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) impaired reproduction and altered offspring physiological functions in Caenorhabditis elegans. Food Chem Toxicol 2020;145:111695. [PMID: 32835727 DOI: 10.1016/j.fct.2020.111695] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
17 Foguth R, Sepúlveda MS, Cannon J. Per- and Polyfluoroalkyl Substances (PFAS) Neurotoxicity in Sentinel and Non-Traditional Laboratory Model Systems: Potential Utility in Predicting Adverse Outcomes in Human Health. Toxics 2020;8:E42. [PMID: 32549216 DOI: 10.3390/toxics8020042] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
18 Chen L. Visual system: An understudied target of aquatic toxicology. Aquat Toxicol 2020;225:105542. [PMID: 32585539 DOI: 10.1016/j.aquatox.2020.105542] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Yan M, Leung PTY, Gu J, Lam VTT, Murray JS, Harwood DT, Wai TC, Lam PKS. Hemolysis associated toxicities of benthic dinoflagellates from Hong Kong waters. Mar Pollut Bull 2020;155:111114. [PMID: 32469761 DOI: 10.1016/j.marpolbul.2020.111114] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Zeeshan M, Yang Y, Zhou Y, Huang W, Wang Z, Zeng X, Liu R, Yang B, Hu L, Zeng X, Sun X, Yu Y, Dong G. Incidence of ocular conditions associated with perfluoroalkyl substances exposure: Isomers of C8 Health Project in China. Environment International 2020;137:105555. [DOI: 10.1016/j.envint.2020.105555] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
21 Lee JW, Choi K, Park K, Seong C, Yu SD, Kim P. Adverse effects of perfluoroalkyl acids on fish and other aquatic organisms: A review. Science of The Total Environment 2020;707:135334. [DOI: 10.1016/j.scitotenv.2019.135334] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
22 Zhang B, Xu T, Yin D, Wei S. The potential relationship between neurobehavioral toxicity and visual dysfunction of BDE-209 on zebrafish larvae: a pilot study. Environ Sci Eur 2020;32. [DOI: 10.1186/s12302-020-00308-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
23 Chen L, Tsui MMP, Hu C, Wan T, Au DWT, Lam JCW, Lam PKS, Zhou B. Parental Exposure to Perfluorobutanesulfonate Impairs Offspring Development through Inheritance of Paternal Methylome. Environ Sci Technol 2019;53:12018-25. [DOI: 10.1021/acs.est.9b03865] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
24 Shi Q, Tsui MM, Hu C, Lam JC, Zhou B, Chen L. Acute exposure to triphenyl phosphate (TPhP) disturbs ocular development and muscular organization in zebrafish larvae. Ecotoxicology and Environmental Safety 2019;179:119-26. [DOI: 10.1016/j.ecoenv.2019.04.056] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
25 Chen L, Lam JCW, Hu C, Tsui MMP, Lam PKS, Zhou B. Perfluorobutanesulfonate Exposure Skews Sex Ratio in Fish and Transgenerationally Impairs Reproduction. Environ Sci Technol 2019;53:8389-97. [PMID: 31269390 DOI: 10.1021/acs.est.9b01711] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
26 Wang Q, Tsui MMP, Ruan Y, Lin H, Zhao Z, Ku JPH, Sun H, Lam PKS. Occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in the seawater and sediment of the South China sea coastal region. Chemosphere 2019;231:468-77. [PMID: 31151006 DOI: 10.1016/j.chemosphere.2019.05.162] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 10.7] [Reference Citation Analysis]
27 Shi Q, Wang Z, Chen L, Fu J, Han J, Hu B, Zhou B. Optical toxicity of triphenyl phosphate in zebrafish larvae. Aquatic Toxicology 2019;210:139-47. [DOI: 10.1016/j.aquatox.2019.02.024] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
28 Chen L, Tsui MM, Lam JC, Hu C, Wang Q, Zhou B, Lam PK. Variation in microbial community structure in surface seawater from Pearl River Delta: Discerning the influencing factors. Science of The Total Environment 2019;660:136-44. [DOI: 10.1016/j.scitotenv.2018.12.480] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 8.3] [Reference Citation Analysis]
29 Wójcik A, Perczyk P, Wydro P, Broniatowski M. Effects of water soluble perfluorinated pollutants on phospholipids in model soil decomposer membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 2018;1860:2576-87. [DOI: 10.1016/j.bbamem.2018.09.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
30 Chen L, Lam JCW, Hu C, Tsui MMP, Wang Q, Giesy JP, Lam PKS. Perfluorobutanesulfonate Exposure Causes Durable and Transgenerational Dysbiosis of Gut Microbiota in Marine Medaka. Environ Sci Technol Lett 2018;5:731-8. [DOI: 10.1021/acs.estlett.8b00597] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
31 Chen L, Tsui MMP, Lam JCW, Wang Q, Hu C, Wai OWH, Zhou B, Lam PKS. Contamination by perfluoroalkyl substances and microbial community structure in Pearl River Delta sediments. Environ Pollut 2019;245:218-25. [PMID: 30423536 DOI: 10.1016/j.envpol.2018.11.005] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]