BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yola ML, Atar N. A novel detection approach for serotonin by graphene quantum dots/two-dimensional (2D) hexagonal boron nitride nanosheets with molecularly imprinted polymer. Applied Surface Science 2018;458:648-55. [DOI: 10.1016/j.apsusc.2018.07.142] [Cited by in Crossref: 96] [Cited by in F6Publishing: 87] [Article Influence: 24.0] [Reference Citation Analysis]
Number Citing Articles
1 Cardoso RM, Pereira TS, Facure MH, dos Santos DM, Mercante LA, Mattoso LH, Correa DS. Current progress in plant pathogen detection enabled by nanomaterials-based (bio)sensors. Sensors and Actuators Reports 2022;4:100068. [DOI: 10.1016/j.snr.2021.100068] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Kadhim MM, Sead FF, Jalil AT, Taban TZ, Rheima AM, Almashhadani HA, Shadhar MH, Hamel S. Al-, Ga-, and In-decorated BP nanotubes as chemical sensors for 2-chloroethanol. Monatsh Chem. [DOI: 10.1007/s00706-022-02952-6] [Reference Citation Analysis]
3 Ramanavicius S, Ramanavicius A. Development of molecularly imprinted polymer based phase boundaries for sensors design (review). Adv Colloid Interface Sci 2022;305:102693. [PMID: 35609398 DOI: 10.1016/j.cis.2022.102693] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
4 Boroujerdi R, Paul R. Graphene-Based Electrochemical Sensors for Psychoactive Drugs. Nanomaterials 2022;12:2250. [DOI: 10.3390/nano12132250] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Abdelsalam H, Zhang QF. Properties and applications of quantum dots derived from two-dimensional materials. Advances in Physics: X 2022;7:2048966. [DOI: 10.1080/23746149.2022.2048966] [Reference Citation Analysis]
6 Revabhai PM, Singhal RK, Basu H, Kailasa SK. Progress on boron nitride nanostructure materials: properties, synthesis and applications in hydrogen storage and analytical chemistry. J Nanostruct Chem. [DOI: 10.1007/s40097-022-00490-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Ramanavicius S, Samukaite-bubniene U, Ratautaite V, Bechelany M, Ramanavicius A. Electrochemical Molecularly Imprinted Polymer Based Sensors for Pharmaceutical and Biomedical Applications (Review). Journal of Pharmaceutical and Biomedical Analysis 2022. [DOI: 10.1016/j.jpba.2022.114739] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
8 Angizi S, Alem SAA, Hasanzadeh Azar M, Shayeganfar F, Manning MI, Hatamie A, Pakdel A, Simchi A. A comprehensive review on planar boron nitride nanomaterials: From 2D nanosheets towards 0D quantum dots. Progress in Materials Science 2022;124:100884. [DOI: 10.1016/j.pmatsci.2021.100884] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 13.0] [Reference Citation Analysis]
9 Vincent T, Liang J, Singh S, Castanon EG, Zhang X, Mccreary A, Jariwala D, Kazakova O, Al Balushi ZY. Opportunities in electrically tunable 2D materials beyond graphene: Recent progress and future outlook. Applied Physics Reviews 2021;8:041320. [DOI: 10.1063/5.0051394] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
10 Molaei MJ, Younas M, Rezakazemi M. A Comprehensive Review on Recent Advances in Two-Dimensional (2D) Hexagonal Boron Nitride. ACS Appl Electron Mater 2021;3:5165-87. [DOI: 10.1021/acsaelm.1c00720] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Das RS, Wankhade AV, Kumar A. Computationally designed ionic liquid based molecularly imprinted@ graphene oxide composite: Characterization and validation. Journal of Molecular Liquids 2021;341:116925. [DOI: 10.1016/j.molliq.2021.116925] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Wang W, Jiang H, Li L, Li G. Two-dimensional group-III nitrides and devices: a critical review. Rep Prog Phys 2021;84. [PMID: 34229312 DOI: 10.1088/1361-6633/ac11c4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Buffon E, Stradiotto NR. A molecularly imprinted polymer on reduced graphene oxide-gold nanoparticles modified screen-printed electrode for selective determination of ferulic acid in orange peels. Microchemical Journal 2021;167:106339. [DOI: 10.1016/j.microc.2021.106339] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
14 Karaman O. Oxygen Reduction Reaction Performance Boosting Effect of Nitrogen/Sulfur Co-Doped Graphene Supported Cobalt Phosphide Nanoelectrocatalyst: pH-Universal Electrocatalyst. ECS J Solid State Sci Technol 2021;10:061003. [DOI: 10.1149/2162-8777/ac0608] [Cited by in Crossref: 6] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
15 Karimi-maleh H, Yola ML, Atar N, Orooji Y, Karimi F, Senthil Kumar P, Rouhi J, Baghayeri M. A novel detection method for organophosphorus insecticide fenamiphos: Molecularly imprinted electrochemical sensor based on core-shell Co3O4@MOF-74 nanocomposite. Journal of Colloid and Interface Science 2021;592:174-85. [DOI: 10.1016/j.jcis.2021.02.066] [Cited by in Crossref: 77] [Cited by in F6Publishing: 155] [Article Influence: 77.0] [Reference Citation Analysis]
16 Kesavan G, Chen S. Highly sensitive manganese oxide/hexagonal boron nitride nanocomposite: An efficient electrocatalyst for the detection of anti-cancer drug flutamide. Microchemical Journal 2021;163:105906. [DOI: 10.1016/j.microc.2020.105906] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
17 Chen L, Zhang Y, Zhou Y, Li GH, Feng XS. Pretreatment and determination methods for benzimidazoles: An update since 2005. J Chromatogr A 2021;1644:462068. [PMID: 33836299 DOI: 10.1016/j.chroma.2021.462068] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Ferreira V, Azenha M, Pereira C, Silva A. Preparation of molecularly imprinted hollow TiO2 microspheres for selective photocatalysis. Chemical Engineering Journal Advances 2021;5:100071. [DOI: 10.1016/j.ceja.2020.100071] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Anusha T, Bhavani KS, Shanmukha Kumar J, Brahman PK. Synthesis and characterization of novel lanthanum nanoparticles-graphene quantum dots coupled with zeolitic imidazolate framework and its electrochemical sensing application towards vitamin D3 deficiency. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;611:125854. [DOI: 10.1016/j.colsurfa.2020.125854] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
20 Ouyang H, Li W, Long Y. Carbon-doped h-BN for the enhanced electrochemical determination of dopamine. Electrochimica Acta 2021;369:137682. [DOI: 10.1016/j.electacta.2020.137682] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
21 Bai J, Chen L, Zhu Y, Wang X, Wu X, Fu Y. A novel luminescence sensor based on porous molecularly imprinted polymer-ZnS quantum dots for selective recognition of paclitaxel. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;610:125696. [DOI: 10.1016/j.colsurfa.2020.125696] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
22 Zhang X, Guo W, Zhou L, Xu Q, Min Y. Surface-modified boron nitride as a filler to achieve high thermal stability of polymer solid-state lithium-metal batteries. J Mater Chem A 2021;9:20530-43. [DOI: 10.1039/d1ta05410d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
23 Xu S, Wang T, Liu G, Cao Z, Frank LA, Jiang S, Zhang C, Li Z, Krasitskaya VV, Li Q, Sha Y, Zhang X, Liu H, Wang J. Analysis of interactions between proteins and small-molecule drugs by a biosensor based on a graphene field-effect transistor. Sensors and Actuators B: Chemical 2021;326:128991. [DOI: 10.1016/j.snb.2020.128991] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
24 Kotan G. Development of Molecularly Imprinted Quartz Crystal Microbalance (QCM) Sensor Including Two-Dimensional Hexagonal Boron Nitride (2D-hBN) Nanosheets and its Application to Ascorbic Acid Detection. ECS J Solid State Sci Technol 2021;10:017003. [DOI: 10.1149/2162-8777/abdc4a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Karaman C, Karaman O, Atar N, Yola ML. Sustainable electrode material for high-energy supercapacitor: biomass-derived graphene-like porous carbon with three-dimensional hierarchically ordered ion highways. Phys Chem Chem Phys 2021;23:12807-21. [PMID: 34059859 DOI: 10.1039/d1cp01726h] [Cited by in Crossref: 12] [Cited by in F6Publishing: 55] [Article Influence: 12.0] [Reference Citation Analysis]
26 Saisree S, Aswathi R, Arya Nair JS, Sandhya KY. Radical sensitivity and selectivity in the electrochemical sensing of cadmium ions in water by polyaniline-derived nitrogen-doped graphene quantum dots. New J Chem 2021;45:110-22. [DOI: 10.1039/d0nj03988h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
27 He Z, Zhao J, Li F, Zhang D, Guo F, Guo H, Wang X, Hu H. In situ synthesis of polymer-modified boron nitride nanosheets via anionic polymerization. Applied Surface Science 2021;537:147966. [DOI: 10.1016/j.apsusc.2020.147966] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
28 Farshchi F, Hasanzadeh M. Microfluidic biosensing of circulating tumor cells (CTCs): Recent progress and challenges in efficient diagnosis of cancer. Biomed Pharmacother 2021;134:111153. [PMID: 33360045 DOI: 10.1016/j.biopha.2020.111153] [Cited by in Crossref: 3] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
29 Özcan N, Karaman C, Atar N, Karaman O, Yola ML. A Novel Molecularly Imprinting Biosensor Including Graphene Quantum Dots/Multi-Walled Carbon Nanotubes Composite for Interleukin-6 Detection and Electrochemical Biosensor Validation. ECS J Solid State Sci Technol 2020;9:121010. [DOI: 10.1149/2162-8777/abd149] [Cited by in Crossref: 24] [Cited by in F6Publishing: 40] [Article Influence: 12.0] [Reference Citation Analysis]
30 Bai C, An L, Zhang J, Zhang X, Zhang B, Qiang L, Yu Y, Zhang J. Superlow friction of amorphous diamond-like carbon films in humid ambient enabled by hexagonal boron nitride nanosheet wrapped carbon nanoparticles. Chemical Engineering Journal 2020;402:126206. [DOI: 10.1016/j.cej.2020.126206] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
31 Cernat A, Ştefan G, Tertis M, Cristea C, Simon I. An overview of the detection of serotonin and dopamine with graphene-based sensors. Bioelectrochemistry 2020;136:107620. [DOI: 10.1016/j.bioelechem.2020.107620] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
32 Bokare A, Nordlund D, Melendrez C, Robinson R, Keles O, Wolcott A, Erogbogbo F. Surface functionality and formation mechanisms of carbon and graphene quantum dots. Diamond and Related Materials 2020;110:108101. [DOI: 10.1016/j.diamond.2020.108101] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
33 Hassanvand Z, Jalali F, Nazari M, Parnianchi F, Santoro C. Carbon Nanodots in Electrochemical Sensors and Biosensors: A Review. ChemElectroChem 2021;8:15-35. [DOI: 10.1002/celc.202001229] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
34 Wei J, Yuan X, Zhang Y, Liu H, Sun B. Ionic liquid-sensitized molecularly imprinted polymers based on heteroatom co-doped quantum dots functionalized graphene for sensitive detection of λ-cyhalothrin. Analytica Chimica Acta 2020;1136:9-18. [DOI: 10.1016/j.aca.2020.08.041] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
35 Medetalibeyoğlu H, Beytur M, Manap S, Karaman C, Kardaş F, Akyıldırım O, Kotan G, Yüksek H, Atar N, Yola ML. Molecular Imprinted Sensor Including Au Nanoparticles/Polyoxometalate/Two-Dimensional Hexagonal Boron Nitride Nanocomposite for Diazinon Recognition. ECS J Solid State Sci Technol 2020;9:101006. [DOI: 10.1149/2162-8777/abbe6a] [Cited by in Crossref: 19] [Cited by in F6Publishing: 32] [Article Influence: 9.5] [Reference Citation Analysis]
36 Kokulnathan T, Vishnuraj R, Wang TJ, Kumar EA, Pullithadathil B. Heterostructured bismuth oxide/hexagonal-boron nitride nanocomposite: A disposable electrochemical sensor for detection of flutamide. Ecotoxicol Environ Saf 2021;207:111276. [PMID: 32931965 DOI: 10.1016/j.ecoenv.2020.111276] [Cited by in Crossref: 6] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
37 Zhang S, Gao Z, Jia Q, Liu N, Yao J, Zhang J, Kou K. Bioinspired Strategy for HMX@hBNNS Dual Shell Energetic Composites with Enhanced Desensitization and Improved Thermal Property. Adv Mater Interfaces 2020;7:2001054. [DOI: 10.1002/admi.202001054] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
38 Xiong X, Li C, Yang X, Shu Y, Jin D, Zang Y, Shu Y, Xu Q, Hu X. In situ grown TiO2 nanorod arrays functionalized by molecularly imprinted polymers for salicylic acid recognition and detection. Journal of Electroanalytical Chemistry 2020;873:114394. [DOI: 10.1016/j.jelechem.2020.114394] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
39 Adu AA, Neolaka YA, Riwu AAP, Iqbal M, Darmokoesoemo H, Kusuma HS. Synthesis, characterization and evaluation of swelling ratio on magnetic p53-poly(MAA-co-EGDMA)@GO-Fe3O4 (MIP@GO-Fe3O4)-based p53 protein and graphene oxide from kusambi wood (Schleichera oleosa). Journal of Materials Research and Technology 2020;9:11060-8. [DOI: 10.1016/j.jmrt.2020.08.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
40 Angizi S, Khalaj M, Alem SAA, Pakdel A, Willander M, Hatamie A, Simchi A. Review—Towards the Two-Dimensional Hexagonal Boron Nitride (2D h-BN) Electrochemical Sensing Platforms. J Electrochem Soc 2020;167:126513. [DOI: 10.1149/1945-7111/abaf29] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
41 Foroutan M, Fatemi SJ, Fatemi SM. A mini-review on dispersion and functionalization of boron nitride nanotubes. J Nanostruct Chem 2020;10:265-74. [DOI: 10.1007/s40097-020-00347-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]
42 Akyıldırım O. A sensitive voltammetric sensor based on silver nanoparticles/carbon nitride nanotubes@graphene quantum dots/a novel organic liquid: determination of triclosan in wastewater. Bull Mater Sci 2020;43. [DOI: 10.1007/s12034-020-02155-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
43 Karimi-maleh H, Karimi F, Malekmohammadi S, Zakariae N, Esmaeili R, Rostamnia S, Yola ML, Atar N, Movaghgharnezhad S, Rajendran S, Razmjou A, Orooji Y, Agarwal S, Gupta VK. An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. Journal of Molecular Liquids 2020;310:113185. [DOI: 10.1016/j.molliq.2020.113185] [Cited by in Crossref: 154] [Cited by in F6Publishing: 153] [Article Influence: 77.0] [Reference Citation Analysis]
44 Ko M, Mendecki L, Eagleton AM, Durbin CG, Stolz RM, Meng Z, Mirica KA. Employing Conductive Metal-Organic Frameworks for Voltammetric Detection of Neurochemicals. J Am Chem Soc 2020;142:11717-33. [PMID: 32155057 DOI: 10.1021/jacs.9b13402] [Cited by in Crossref: 39] [Cited by in F6Publishing: 65] [Article Influence: 19.5] [Reference Citation Analysis]
45 Kou J, Nguyen EP, Merkoçi A, Guo Z. 2-dimensional materials-based electrical/optical platforms for smart on-off diagnostics applications. 2D Mater 2020;7:032001. [DOI: 10.1088/2053-1583/ab896a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
46 Jain U, Soni S, Balhara YPS, Khanuja M, Chauhan N. Dual-Layered Nanomaterial-Based Molecular Pattering on Polymer Surface Biomimetic Impedimetric Sensing of a Bliss Molecule, Anandamide Neurotransmitter. ACS Omega 2020;5:10750-8. [PMID: 32455194 DOI: 10.1021/acsomega.0c00285] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
47 Saadati A, Hassanpour S, Hasanzadeh M, Shadjou N. Binding of pDNA with cDNA using hybridization strategy towards monitoring of Haemophilus influenza genome in human plasma samples. International Journal of Biological Macromolecules 2020;150:218-27. [DOI: 10.1016/j.ijbiomac.2020.02.062] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
48 Chauhan N, Soni S, Agrawal P, Balhara YPS, Jain U. Recent advancement in nanosensors for neurotransmitters detection: Present and future perspective. Process Biochemistry 2020;91:241-59. [DOI: 10.1016/j.procbio.2019.12.016] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
49 Qiang R, Hou K, Wang J, Yang S. Smooth and dense graphene quantum dots-based lubricating coatings prepared by electrophoretic deposition. Applied Surface Science 2020;509:145338. [DOI: 10.1016/j.apsusc.2020.145338] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
50 Liu Z, Mo Z, Niu X, Yang X, Jiang Y, Zhao P, Liu N, Guo R. Highly sensitive fluorescence sensor for mercury(II) based on boron- and nitrogen-co-doped graphene quantum dots. Journal of Colloid and Interface Science 2020;566:357-68. [DOI: 10.1016/j.jcis.2020.01.092] [Cited by in Crossref: 18] [Cited by in F6Publishing: 30] [Article Influence: 9.0] [Reference Citation Analysis]
51 Hatamluyi B, Hashemzadeh A, Darroudi M. A novel molecularly imprinted polymer decorated by CQDs@HBNNS nanocomposite and UiO-66-NH2 for ultra-selective electrochemical sensing of Oxaliplatin in biological samples. Sensors and Actuators B: Chemical 2020;307:127614. [DOI: 10.1016/j.snb.2019.127614] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
52 Singh B, Singh K, Kumar M, Thakur S, Kumar A. Insights of preferred growth, elemental and morphological properties of BN/SnO2 composite for photocatalytic applications towards organic pollutants. Chemical Physics 2020;531:110659. [DOI: 10.1016/j.chemphys.2019.110659] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
53 Akbari S. A new voltammetric sensor according to graphene quantum dots/ionic liquid modified carbon paste electrode for amaranth sensitive determination. International Journal of Environmental Analytical Chemistry 2022;102:789-803. [DOI: 10.1080/03067319.2020.1726338] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Simão EP, Silva DB, Cordeiro MT, Gil LH, Andrade CA, Oliveira MD. Nanostructured impedimetric lectin-based biosensor for arboviruses detection. Talanta 2020;208:120338. [DOI: 10.1016/j.talanta.2019.120338] [Cited by in Crossref: 14] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
55 Yu C, Guo X, Gao X, Yu Z, Jiang J. Transport of graphene quantum dots (GQDs) in saturated porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;589:124418. [DOI: 10.1016/j.colsurfa.2020.124418] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
56 Li Y, Zhang L, Sun Z, Gao G, Lu S, Zhu M, Zhang Y, Jia Z, Xiao C, Bu H, Xi K, Ding S. Hexagonal boron nitride induces anion trapping in a polyethylene oxide based solid polymer electrolyte for lithium dendrite inhibition. J Mater Chem A 2020;8:9579-89. [DOI: 10.1039/d0ta03677c] [Cited by in Crossref: 18] [Cited by in F6Publishing: 30] [Article Influence: 9.0] [Reference Citation Analysis]
57 Tajik S, Dourandish Z, Zhang K, Beitollahi H, Le QV, Jang HW, Shokouhimehr M. Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv 2020;10:15406-29. [DOI: 10.1039/d0ra00799d] [Cited by in Crossref: 90] [Cited by in F6Publishing: 119] [Article Influence: 45.0] [Reference Citation Analysis]
58 Fethi A. Novel materials for electrochemical sensing platforms. Sensors International 2020;1:100035. [DOI: 10.1016/j.sintl.2020.100035] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
59 Muthukutty B, Krishnapandi A, Chen S. The facile co-precipitation synthesis of strontium tungstate anchored on a boron nitride (SrWO 4 /BN) composite as a promising electrocatalyst for pharmaceutical drug analysis. New J Chem 2020;44:2489-99. [DOI: 10.1039/c9nj05673d] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
60 Ahmad P, Khandaker MU, Muhammad N, Khan G, Rehman F, Khan AS, Ullah Z, Khan A, Ali H, Ahmed SM, Rauf Khan MA, Iqbal J, Khan AA, Irshad MI. Fabrication of hexagonal boron nitride quantum dots via a facile bottom-up technique. Ceramics International 2019;45:22765-8. [DOI: 10.1016/j.ceramint.2019.07.316] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
61 Yang S, Bai C, Teng Y, Zhang J, Peng J, Fang Z, Xu W. Study of horseradish peroxidase and hydrogen peroxide bi-analyte sensor with boronate affinity-based molecularly imprinted film. Can J Chem 2019;97:833-9. [DOI: 10.1139/cjc-2019-0134] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
62 Li W, Xie X, Wu T, Yang H, Peng Y, Luo L, Chen Y. Targeted delivery of Auristatin PE to Hep G2 cells using folate - conjugated boron nitride nanotubes. Mater Sci Eng C Mater Biol Appl 2020;109:110509. [PMID: 32228939 DOI: 10.1016/j.msec.2019.110509] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
63 Kováčová M, Špitalská E, Markovic Z, Špitálský Z. Carbon Quantum Dots As Antibacterial Photosensitizers and Their Polymer Nanocomposite Applications. Part Part Syst Charact 2019;37:1900348. [DOI: 10.1002/ppsc.201900348] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
64 Wen Q, Zeng Z, Liu W, Gao J, Zhang HM, Zhang CC, Zheng Y. In vitro monitoring of glutathione via a switched-on effect based on a lanthanide incorporated carbon nanostructure with biocompatibility. Synthetic Metals 2019;257:116183. [DOI: 10.1016/j.synthmet.2019.116183] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
65 Mahmoudi-moghaddam H, Tajik S, Beitollahi H. A new electrochemical DNA biosensor based on modified carbon paste electrode using graphene quantum dots and ionic liquid for determination of topotecan. Microchemical Journal 2019;150:104085. [DOI: 10.1016/j.microc.2019.104085] [Cited by in Crossref: 45] [Cited by in F6Publishing: 50] [Article Influence: 15.0] [Reference Citation Analysis]
66 Shetti NP, Malode SJ, Nayak DS, Aminabhavi TM, Reddy KR. Nanostructured silver doped TiO2/CNTs hybrid as an efficient electrochemical sensor for detection of anti-inflammatory drug, cetirizine. Microchemical Journal 2019;150:104124. [DOI: 10.1016/j.microc.2019.104124] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 16.0] [Reference Citation Analysis]
67 Kıran TR, Yola ML, Atar N. Electrochemical Sensor Based on Au@nitrogen-Doped Carbon Quantum Dots@Ag Core-Shell Composite Including Molecular Imprinted Polymer for Metobromuron Recognition. J Electrochem Soc 2019;166:H691-7. [DOI: 10.1149/2.0451914jes] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
68 Gonzalez-vogel A, Fogde A, Crestini C, Sandberg T, Huynh T, Bobacka J. Molecularly imprinted conducting polymer for determination of a condensed lignin marker. Sensors and Actuators B: Chemical 2019;295:186-93. [DOI: 10.1016/j.snb.2019.05.011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
69 Kıran TR, Atar N, Yola ML. A Methyl Parathion Recognition Method Based on Carbon Nitride Incorporated Hexagonal Boron Nitride Nanosheets Composite Including Molecularly Imprinted Polymer. J Electrochem Soc 2019;166:H495-501. [DOI: 10.1149/2.0331912jes] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 10.3] [Reference Citation Analysis]
70 Mulaba-bafubiandi AF, Karimi-maleh H, Karimi F, Rezapour M. A voltammetric carbon paste sensor modified with NiO nanoparticle and ionic liquid for fast analysis of p-nitrophenol in water samples. Journal of Molecular Liquids 2019;285:430-5. [DOI: 10.1016/j.molliq.2019.04.084] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
71 Liang G, Guo X, Tan X, Mai S, Chen Z, Zhai H. Molecularly imprinted monolithic column based on functionalized β-cyclodextrin and multi-walled carbon nanotubes for selective recognition of benzimidazole residues in citrus samples. Microchemical Journal 2019;146:1285-94. [DOI: 10.1016/j.microc.2019.02.064] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
72 Yola ML. Electrochemical activity enhancement of monodisperse boron nitride quantum dots on graphene oxide: Its application for simultaneous detection of organophosphate pesticides in real samples. Journal of Molecular Liquids 2019;277:50-7. [DOI: 10.1016/j.molliq.2018.12.084] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 13.0] [Reference Citation Analysis]
73 Zengin A, Utku Badak M, Bilici M, Suludere Z, Aktas N. Preparation of molecularly imprinted PDMS elastomer for selective detection of folic acid in orange juice. Applied Surface Science 2019;471:168-75. [DOI: 10.1016/j.apsusc.2018.12.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
74 Liu F, Kan X. Conductive imprinted electrochemical sensor for epinephrine sensitive detection and double recognition. Journal of Electroanalytical Chemistry 2019;836:182-9. [DOI: 10.1016/j.jelechem.2019.01.050] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
75 Abou Al Alamein AM, Hendawy HA, Elabd NO. Chemometrics-assisted voltammetric determination of timolol maleate and brimonidine tartrate utilizing a carbon paste electrode modified with iron (III) oxide nanoparticles. Microchemical Journal 2019;145:313-29. [DOI: 10.1016/j.microc.2018.10.042] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
76 Tang J, Huang R, Zheng S, Jiang S, Yu H, Li Z, Wang J. A sensitive and selective electrochemical sensor based on graphene quantum dots/gold nanoparticles nanocomposite modified electrode for the determination of luteolin in peanut hulls. Microchemical Journal 2019;145:899-907. [DOI: 10.1016/j.microc.2018.12.006] [Cited by in Crossref: 28] [Cited by in F6Publishing: 11] [Article Influence: 9.3] [Reference Citation Analysis]
77 Abdel Ghani NT, Abdulla H, Rizk MS, Dena ASA, El Nashar RM. Molecularly imprinted polymer/reduced graphene oxide‒based carbon‒paste sensor for highly sensitive determination of the anti‒HCV drug daclatasvir dihydrochloride. Sensors and Actuators B: Chemical 2019;283:6-17. [DOI: 10.1016/j.snb.2018.11.158] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
78 Dąbrowski M, Zimińska A, Kalecki J, Cieplak M, Lisowski W, Maksym R, Shao S, D’souza F, Kuhn A, Sharma PS. Facile Fabrication of Surface-Imprinted Macroporous Films for Chemosensing of Human Chorionic Gonadotropin Hormone. ACS Appl Mater Interfaces 2019;11:9265-76. [DOI: 10.1021/acsami.8b17951] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
79 Zhang H, Li Y, Zheng D, Cao S, Chen L, Huang L, Xiao H. Bio-inspired construction of cellulose-based molecular imprinting membrane with selective recognition surface for paclitaxel separation. Applied Surface Science 2019;466:244-53. [DOI: 10.1016/j.apsusc.2018.10.038] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
80 di Martos LM, Jost CL. Sequential determination of five heavy metal ions in Brazilian phosphate fertilizers and surface waters by stripping voltammetry. Int J Environ Sci Technol 2019;16:6535-46. [DOI: 10.1007/s13762-018-02181-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
81 Kausar A. Technical imprint of polymer nanocomposite comprising graphene quantum dot. Polymer-Plastics Technology and Materials 2019;58:597-617. [DOI: 10.1080/25740881.2018.1563110] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
82 Meng Z, Stolz RM, Mendecki L, Mirica KA. Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chem Rev 2019;119:478-598. [PMID: 30604969 DOI: 10.1021/acs.chemrev.8b00311] [Cited by in Crossref: 206] [Cited by in F6Publishing: 281] [Article Influence: 68.7] [Reference Citation Analysis]
83 Yu R, Zhou H, Li M, Song Q. Rational selection of the monomer for molecularly imprinted polymer preparation for selective and sensitive detection of 3-methylindole in water. Journal of Electroanalytical Chemistry 2019;832:129-36. [DOI: 10.1016/j.jelechem.2018.10.043] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
84 Nekoueian K, Amiri M, Sillanpää M, Marken F, Boukherroub R, Szunerits S. Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chem Soc Rev 2019;48:4281-316. [DOI: 10.1039/c8cs00445e] [Cited by in Crossref: 79] [Cited by in F6Publishing: 113] [Article Influence: 26.3] [Reference Citation Analysis]
85 Bimakr F, Ginige MP, Kaksonen AH, Sutton DC, Puzon GJ, Cheng KY. Assessing graphite and stainless-steel for electrochemical sensing of biofilm growth in chlorinated drinking water systems. Sensors and Actuators B: Chemical 2018;277:526-34. [DOI: 10.1016/j.snb.2018.09.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
86 Srivastava J, Kushwaha A, Singh M. Imprinted Graphene-Starch Nanocomposite Matrix-Anchored EQCM Platform for Highly Selective Sensing of Epinephrine. NANO 2018;13:1850131. [DOI: 10.1142/s179329201850131x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]