BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Q, Chen Y, Ni D, Huang Z, Wei J, Feng L, Su JC, Wei Y, Ning S, Yang X, Zhao M, Qiu Y, Song K, Yu Z, Xu J, Li X, Lin H, Lu S, Zhang J. Targeting a cryptic allosteric site of SIRT6 with small-molecule inhibitors that inhibit the migration of pancreatic cancer cells. Acta Pharm Sin B 2022;12:876-89. [PMID: 35256952 DOI: 10.1016/j.apsb.2021.06.015] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 20.0] [Reference Citation Analysis]
Number Citing Articles
1 Song N, Guan X, Zhang S, Wang X, Lu Z, Chong D, Wang JY, Yu R, Yu W, Gu Y, Jiang T. Discovery of a Pyrrole-pyridinimidazole Derivative as Novel SIRT6 Inhibitor for Sensitizing Pancreatic Cancer Cells to Gemcitabine.. [DOI: 10.21203/rs.3.rs-1982889/v1] [Reference Citation Analysis]
2 Verkhivker G, Agajanian S, Kassab R, Krishnan K. Atomistic Simulations and Network-Based Energetic Profiling of Binding and Allostery in the SARS-CoV-2 Spike Omicron BA.1, BA.1.1, BA.2 and BA.3 Subvariant Complexes with the Host Receptor: Revealing Hidden Functional Roles of the Binding Hotspots in Mediating Epistatic Effects and Long-Range Communication with Allosteric Pockets.. [DOI: 10.1101/2022.09.05.506698] [Reference Citation Analysis]
3 Wang G, Bai Y, Cui J, Zong Z, Gao Y, Zheng Z. Computer-Aided Drug Design Boosts RAS Inhibitor Discovery. Molecules 2022;27:5710. [PMID: 36080477 DOI: 10.3390/molecules27175710] [Reference Citation Analysis]
4 Zhuang H, Fan J, Li M, Zhang H, Yang X, Lin L, Lu S, Wang Q, Liu Y. Mechanistic insights into the clinical Y96D mutation with acquired resistance to AMG510 in the KRASG12C. Front Oncol 2022;12:915512. [DOI: 10.3389/fonc.2022.915512] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zhou S, Yang B, Xu Y, Gu A, Peng J, Fu J. Understanding gilteritinib resistance to FLT3-F691L mutation through an integrated computational strategy. J Mol Model 2022;28:247. [PMID: 35932378 DOI: 10.1007/s00894-022-05254-0] [Reference Citation Analysis]
6 You Q, Wang J, Yu Y, Li F, Meng L, Chen M, Yang Q, Xu Z, Sun J, Zhuo W, Chen Z. The histone deacetylase SIRT6 promotes glycolysis through the HIF-1α/HK2 signaling axis and induces erlotinib resistance in non-small cell lung cancer. Apoptosis 2022. [PMID: 35915188 DOI: 10.1007/s10495-022-01751-y] [Reference Citation Analysis]
7 Sandoval JE, Ramabadran R, Stillson N, Sarah L, Fujimori DG, Goodell MA, Reich N. First-in-Class Allosteric Inhibitors of DNMT3A Disrupt Protein-Protein Interactions and Induce Acute Myeloid Leukemia Cell Differentiation. J Med Chem 2022. [PMID: 35866897 DOI: 10.1021/acs.jmedchem.2c00725] [Reference Citation Analysis]
8 Shi Y, Cao S, Ni D, Fan J, Lu S, Xue M. The Role of Conformational Dynamics and Allostery in the Control of Distinct Efficacies of Agonists to the Glucocorticoid Receptor. Front Mol Biosci 2022;9:933676. [DOI: 10.3389/fmolb.2022.933676] [Reference Citation Analysis]
9 Ji M, Chai Z, Chen J, Li G, Li Q, Li M, Ding Y, Lu S, Ju G, Hou J. Insights into the Allosteric Effect of SENP1 Q597A Mutation on the Hydrolytic Reaction of SUMO1 via an Integrated Computational Study. Molecules 2022;27:4149. [DOI: 10.3390/molecules27134149] [Reference Citation Analysis]
10 Liu C, Li Z, Liu Z, Yang S, Wang Q, Chai Z. Understanding the P-Loop Conformation in the Determination of Inhibitor Selectivity Toward the Hepatocellular Carcinoma-Associated Dark Kinase STK17B. Front Mol Biosci 2022;9:901603. [DOI: 10.3389/fmolb.2022.901603] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Parray ZA, Shahid M, Islam A. Insights into Fluctuations of Structure of Proteins: Significance of Intermediary States in Regulating Biological Functions. Polymers (Basel) 2022;14:1539. [PMID: 35458289 DOI: 10.3390/polym14081539] [Reference Citation Analysis]
12 Zhang H, Zhu M, Li M, Ni D, Wang Y, Deng L, Du K, Lu S, Shi H, Cai C. Mechanistic Insights Into Co-Administration of Allosteric and Orthosteric Drugs to Overcome Drug-Resistance in T315I BCR-ABL1. Front Pharmacol 2022;13:862504. [DOI: 10.3389/fphar.2022.862504] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
13 Ni D, Liu Y, Kong R, Yu Z, Lu S, Zhang J. Computational elucidation of allosteric communication in proteins for allosteric drug design. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.03.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Zhuang H, Fan X, Ji D, Wang Y, Fan J, Li M, Ni D, Lu S, Li X, Chai Z. Elucidation of the conformational dynamics and assembly of Argonaute−RNA complexes by distinct yet coordinated actions of the supplementary microRNA. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.03.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
15 Fan J, Liu Y, Kong R, Ni D, Yu Z, Lu S, Zhang J. Harnessing Reversed Allosteric Communication: A Novel Strategy for Allosteric Drug Discovery. J Med Chem 2021;64:17728-43. [PMID: 34878270 DOI: 10.1021/acs.jmedchem.1c01695] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
16 Ni D, Chai Z, Wang Y, Li M, Yu Z, Liu Y, Lu S, Zhang J. Along the allostery stream: Recent advances in computational methods for allosteric drug discovery. WIREs Comput Mol Sci. [DOI: 10.1002/wcms.1585] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]