BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhou M, Li L, Li L, Lin X, Wang F, Li Q, Huang Y. Overcoming chemotherapy resistance via simultaneous drug-efflux circumvention and mitochondrial targeting. Acta Pharm Sin B 2019;9:615-25. [PMID: 31193791 DOI: 10.1016/j.apsb.2018.11.005] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Wang J, Wang F, Xie D, Zhou M, Liao J, Wu H, Dai Y, Huang J, Zhao Y. PLGA Nanoparticles Containing VCAM-1 Inhibitor Succinobucol and Chemotherapeutic Doxorubicin as Therapy against Primary Tumors and Their Lung Metastases. Pharmaceutics 2023;15:349. [DOI: 10.3390/pharmaceutics15020349] [Reference Citation Analysis]
2 He H, Zhu D, Ma A, Ren J, Chen Z, Ran H, Li Z, Qin R, Liang R, Liu L, Cai L. Reconstructing Tumor Microenvironment Using Photoresponsive Cyanobacteria to Reversal Chemoresistance for Robust Chemotherapy. Small Structures 2023. [DOI: 10.1002/sstr.202200325] [Reference Citation Analysis]
3 Ding Y, Pan Q, Gao W, Pu Y, Luo K, He B. Reactive oxygen species-upregulating nanomedicines towards enhanced cancer therapy. Biomater Sci 2023. [PMID: 36606593 DOI: 10.1039/d2bm01833k] [Reference Citation Analysis]
4 Mir SA, Hamid L, Bader GN, Shoaib A, Rahamathulla M, Alshahrani MY, Alam P, Shakeel F. Role of Nanotechnology in Overcoming the Multidrug Resistance in Cancer Therapy: A Review. Molecules 2022;27:6608. [PMID: 36235145 DOI: 10.3390/molecules27196608] [Reference Citation Analysis]
5 Yi X, Yan Y, Shen X, Li L, Huang Y. Mitochondria-Targeted Delivery of Camptothecin Based on HPMA Copolymer for Metastasis Suppression. Pharmaceutics 2022;14:1534. [DOI: 10.3390/pharmaceutics14081534] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Mandal AK. Mitochondrial targeting of potent nanoparticulated drugs in combating diseases. J Biomater Appl 2022;:8853282221111656. [PMID: 35790487 DOI: 10.1177/08853282221111656] [Reference Citation Analysis]
7 Mirzaghavami PS, Khoei S, Khoee S, Shirvalilou S. Folic acid-conjugated magnetic triblock copolymer nanoparticles for dual targeted delivery of 5-fluorouracil to colon cancer cells. Cancer Nano 2022;13. [DOI: 10.1186/s12645-022-00120-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Liu C, Li L, Lyu J, Xiang Y, Chen L, Zhou Z, Huang Y. Split bullets loaded nanoparticles for amplified immunotherapy. J Control Release 2022;347:199-210. [PMID: 35550911 DOI: 10.1016/j.jconrel.2022.05.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 Isik G, Kiziltay A, Hasirci N, Tezcaner A. Lithocholic Acid Conjugated mPEG-b-PCL Micelles for pH Responsive Delivery to Breast Cancer Cells. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.121779] [Reference Citation Analysis]
10 Xiao Q, Zhao W, Wu C, Wang X, Chen J, Shi X, Sha S, Li J, Liang X, Yang Y, Guo H, Wang Y, Fan JB. Lemon-Derived Extracellular Vesicles Nanodrugs Enable to Efficiently Overcome Cancer Multidrug Resistance by Endocytosis-Triggered Energy Dissipation and Energy Production Reduction. Adv Sci (Weinh) 2022;:e2105274. [PMID: 35187842 DOI: 10.1002/advs.202105274] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
11 Guo K, Liu Y, Tang L, Shubhra QT. Homotypic biomimetic coating synergizes chemo-photothermal combination therapy to treat breast cancer overcoming drug resistance. Chemical Engineering Journal 2022;428:131120. [DOI: 10.1016/j.cej.2021.131120] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
12 Zhou M, Xie D, Zhou Z, Li L, Huang Y. Spatially targeting of tumor-associated macrophages and cancer cells for suppression of spontaneously metastatic tumor. Nano Res . [DOI: 10.1007/s12274-021-3976-9] [Reference Citation Analysis]
13 Yi X, Yan Y, Li L, Zhou R, Shen X, Huang Y. Combination of mitochondria impairment and inflammation blockade to combat metastasis. J Control Release 2021;341:753-68. [PMID: 34915072 DOI: 10.1016/j.jconrel.2021.12.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Ding N, Zhao Z, Yin N, Xu Y, Yin T, Gou J, He H, Wang Y, Zhang Y, Tang X. Co-delivery of gemcitabine and cisplatin via Poly (L-glutamic acid)-g-methoxy poly (ethylene glycol) micelle to improve the in vivo stability and antitumor effect. Pharm Res 2021. [PMID: 34893950 DOI: 10.1007/s11095-021-03139-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Zeng Z, Fang C, Zhang Y, Chen CX, Zhang YF, Zhang K. Mitochondria-Targeted Nanocarriers Promote Highly Efficient Cancer Therapy: A Review. Front Bioeng Biotechnol 2021;9:784602. [PMID: 34869294 DOI: 10.3389/fbioe.2021.784602] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Lu P, Huang Y, Zhang C, Fu L, Wang X, Chen L. An aggregation-induced emission fluorescence probe for evaluating the effect of CYP450 changes under tumor chemotherapy. Talanta 2021;239:123111. [PMID: 34861484 DOI: 10.1016/j.talanta.2021.123111] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Yang J, Li Q, Zhou M, Li X, Huang Y, Yang N, Zhou Z. Concurrent impairment of nucleus and mitochondria for synergistic inhibition of cancer metastasis. Int J Pharm 2021;608:121077. [PMID: 34487811 DOI: 10.1016/j.ijpharm.2021.121077] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 R G, S RP, Thomas A, Rengan AK. Doxorubicin loaded polyvinylpyrrolidone-copper sulfide nanoparticles enabling mucoadhesiveness and chemo-photothermal synergism for effective killing of breast cancer cells. Materialia 2021;19:101195. [DOI: 10.1016/j.mtla.2021.101195] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Cheng F, Pan Q, Gao W, Pu Y, Luo K, He B. Reversing Chemotherapy Resistance by a Synergy between Lysosomal pH-Activated Mitochondrial Drug Delivery and Erlotinib-Mediated Drug Efflux Inhibition. ACS Appl Mater Interfaces 2021. [PMID: 34130450 DOI: 10.1021/acsami.1c03196] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
20 Xie R, Ruan S, Liu J, Qin L, Yang C, Tong F, Lei T, Shevtsov M, Gao H, Qin Y. Furin-instructed aggregated gold nanoparticles for re-educating tumor associated macrophages and overcoming breast cancer chemoresistance. Biomaterials 2021;275:120891. [PMID: 34051669 DOI: 10.1016/j.biomaterials.2021.120891] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 12.5] [Reference Citation Analysis]
21 Zhou M, Luo C, Zhou Z, Li L, Huang Y. Improving anti-PD-L1 therapy in triple negative breast cancer by polymer-enhanced immunogenic cell death and CXCR4 blockade. J Control Release 2021;334:248-62. [PMID: 33915224 DOI: 10.1016/j.jconrel.2021.04.029] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
22 Omabe K, Paris C, Lannes F, Taïeb D, Rocchi P. Nanovectorization of Prostate Cancer Treatment Strategies: A New Approach to Improved Outcomes. Pharmaceutics 2021;13:591. [PMID: 33919150 DOI: 10.3390/pharmaceutics13050591] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
23 Qin J, Gong N, Liao Z, Zhang S, Timashev P, Huo S, Liang XJ. Recent progress in mitochondria-targeting-based nanotechnology for cancer treatment. Nanoscale 2021;13:7108-18. [PMID: 33889907 DOI: 10.1039/d1nr01068a] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
24 Mirzaghavami PS, Khoei S, Khoee S, Shirvalilou S, Mahdavi SR, Pirhajati Mahabadi V. Radio-sensitivity enhancement in HT29 cells through magnetic hyperthermia in combination with targeted nano-carrier of 5-Flourouracil. Mater Sci Eng C Mater Biol Appl 2021;124:112043. [PMID: 33947543 DOI: 10.1016/j.msec.2021.112043] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
25 Kim DH, Jeong CH, Cheng WN, Kwon HC, Kim D, Seo K, Choi Y, Han SG. Effects of kefir on doxorubicin-induced multidrug resistance in human colorectal cancer cells. Journal of Functional Foods 2021;78:104371. [DOI: 10.1016/j.jff.2021.104371] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Yi X, Yan Y, Li L, Li Q, Xiang Y, Huang Y. Sequentially Targeting Cancer‐Associated Fibroblast and Mitochondria Alleviates Tumor Hypoxia and Inhibits Cancer Metastasis by Preventing “Soil” Formation and “Seed” Dissemination. Adv Funct Mater 2021;31:2010283. [DOI: 10.1002/adfm.202010283] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
27 Fouad MA, Sayed-Ahmed MM, Huwait EA, Hafez HF, Osman AM. Epigenetic immunomodulatory effect of eugenol and astaxanthin on doxorubicin cytotoxicity in hormonal positive breast Cancer cells. BMC Pharmacol Toxicol 2021;22:8. [PMID: 33509300 DOI: 10.1186/s40360-021-00473-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
28 Yang J, Li Q, Zhou R, Zhou M, Lin X, Xiang Y, Xie D, Huang Y, Zhou Z. Combination of mitochondria targeting doxorubicin with Bcl-2 function-converting peptide NuBCP-9 for synergistic breast cancer metastasis inhibition. J Mater Chem B 2021;9:1336-50. [PMID: 33443508 DOI: 10.1039/d0tb02564j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Huang M, Myers CR, Wang Y, You M. Mitochondria as a Novel Target for Cancer Chemoprevention: Emergence of Mitochondrial-targeting Agents. Cancer Prev Res (Phila) 2021;14:285-306. [PMID: 33303695 DOI: 10.1158/1940-6207.CAPR-20-0425] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
30 Jin R, Wang Q, Dou G, Bai Y, Liu S, Cai B, Chen X. Stimuli responsive nanoplatform with mitochondria-specific multiple model therapeutics for effective tumor treatment. Applied Materials Today 2020;21:100883. [DOI: 10.1016/j.apmt.2020.100883] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Nasr M, Hashem F, Abdelmoniem R, Tantawy N, Teiama M. In Vitro Cytotoxicity and Cellular Uptake of Tamoxifen Citrate-Loaded Polymeric Micelles. AAPS PharmSciTech 2020;21:306. [PMID: 33151433 DOI: 10.1208/s12249-020-01850-6] [Reference Citation Analysis]
32 Banstola A, Duwa R, Emami F, Jeong J, Yook S. Enhanced Caspase-Mediated Abrogation of Autophagy by Temozolomide-Loaded and Panitumumab-Conjugated Poly(lactic- co -glycolic acid) Nanoparticles in Epidermal Growth Factor Receptor Overexpressing Glioblastoma Cells. Mol Pharmaceutics 2020;17:4386-400. [DOI: 10.1021/acs.molpharmaceut.0c00856] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
33 Wang T, Guo Y, He Y, Ren T, Yin L, Fawcett JP, Gu J, Sun H. Impact of molecular weight on the mechanism of cellular uptake of polyethylene glycols (PEGs) with particular reference to P-glycoprotein. Acta Pharm Sin B 2020;10:2002-9. [PMID: 33163350 DOI: 10.1016/j.apsb.2020.02.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
34 Zhao Y, Jiang H, Gu M, Zu C, Zheng X. Gemcitabine resistance in triple-negative breast cancer cells can be reverted by Drosophila melanogaster deoxyribonucleoside kinase in the nucleus or cytosol. Oncol Lett 2020;20:247. [PMID: 32973960 DOI: 10.3892/ol.2020.12109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
35 Li Q, Yang J, Chen C, Lin X, Zhou M, Zhou Z, Huang Y. A novel mitochondrial targeted hybrid peptide modified HPMA copolymers for breast cancer metastasis suppression. J Control Release 2020;325:38-51. [PMID: 32598957 DOI: 10.1016/j.jconrel.2020.06.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
36 Xin T, Lv W, Liu D, Jing Y, Hu F. ROCK1 knockdown inhibits non-small-cell lung cancer progression by activating the LATS2-JNK signaling pathway. Aging (Albany NY) 2020;12:12160-74. [PMID: 32554853 DOI: 10.18632/aging.103386] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
37 Wang H, Huang Y. Combination therapy based on nano codelivery for overcoming cancer drug resistance. Medicine in Drug Discovery 2020;6:100024. [DOI: 10.1016/j.medidd.2020.100024] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 9.7] [Reference Citation Analysis]
38 Du J, Li J, Gao M, Guan Q, Liu T, Wu Y, Li Z, Zuo D, Zhang W, Wu Y. MAY, a novel tubulin inhibitor, induces cell apoptosis in A549 and A549/Taxol cells and inhibits epithelial-mesenchymal transition in A549/Taxol cells. Chemico-Biological Interactions 2020;323:109074. [DOI: 10.1016/j.cbi.2020.109074] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
39 Song J, Zhao W, Lu C, Shao X. Spliced X-box binding protein 1 induces liver cancer cell death via activating the Mst1-JNK-mROS signalling pathway. J Cell Physiol 2020;235:9378-87. [PMID: 32335916 DOI: 10.1002/jcp.29742] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
40 Rani S, Gupta U. HPMA-based polymeric conjugates in anticancer therapeutics. Drug Discov Today 2020;25:997-1012. [PMID: 32334073 DOI: 10.1016/j.drudis.2020.04.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
41 Li Q, Huang Y. Mitochondrial targeted strategies and their application for cancer and other diseases treatment. J Pharm Investig 2020;50:271-93. [DOI: 10.1007/s40005-020-00481-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
42 Li M, Xu H, Wang J. Optimized functional and structural design of dual-target LMRAP, a bifunctional fusion protein with a 25-amino-acid antitumor peptide and GnRH Fc fragment. Acta Pharm Sin B 2020;10:262-75. [PMID: 32082972 DOI: 10.1016/j.apsb.2019.10.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
43 Bin Y, Ding Y, Xiao W, Liao A. RASSF1A: A promising target for the diagnosis and treatment of cancer. Clin Chim Acta 2020;504:98-108. [PMID: 31981586 DOI: 10.1016/j.cca.2020.01.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
44 Zhou X, Wang A, Wang L, Yin J, Wang L, Di L, Hoi MP, Shan L, Wu X, Wang Y. A Danshensu-Tetramethylpyrazine Conjugate DT-010 Overcomes Multidrug Resistance in Human Breast Cancer. Front Pharmacol 2019;10:722. [PMID: 31293428 DOI: 10.3389/fphar.2019.00722] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
45 Li Y, Luo J, Lin MT, Zhi P, Guo WW, Han M, You J, Gao JQ. Co-Delivery of Metformin Enhances the Antimultidrug Resistant Tumor Effect of Doxorubicin by Improving Hypoxic Tumor Microenvironment. Mol Pharm 2019;16:2966-79. [PMID: 31095914 DOI: 10.1021/acs.molpharmaceut.9b00199] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
46 Diao L, Shen A, Yang Y, Tao J, Hu Y. CD44-targeted hyaluronic acid–curcumin reverses chemotherapeutics resistance by inhibiting P-gp and anti-apoptotic pathways. RSC Adv 2019;9:40873-82. [DOI: 10.1039/c9ra08202f] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]