BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ghouse S, Reznikov N, Boughton OR, Babu S, Geoffrey Ng KC, Blunn G, Cobb JP, Stevens MM, Jeffers JRT. The Design and In Vivo Testing of a Locally Stiffness-Matched Porous Scaffold. Appl Mater Today 2019;15:377-88. [PMID: 31281871 DOI: 10.1016/j.apmt.2019.02.017] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 13.8] [Reference Citation Analysis]
Number Citing Articles
1 Yan Z, Hu Y, Shi H, Wang P, Liu Z, Tian Y, Zhuang Z. Experimentally characterizing the spatially varying anisotropic mechanical property of cancellous bone via a Bayesian calibration method. J Mech Behav Biomed Mater 2023;138:105643. [PMID: 36603525 DOI: 10.1016/j.jmbbm.2022.105643] [Reference Citation Analysis]
2 Distefano F, Mineo R, Epasto G. Mechanical behaviour of a novel biomimetic lattice structure for bone scaffold. J Mech Behav Biomed Mater 2023;138:105656. [PMID: 36623402 DOI: 10.1016/j.jmbbm.2023.105656] [Reference Citation Analysis]
3 Shum JM, Gadomski BC, Tredinnick SJ, Fok W, Fernandez J, Nelson B, Palmer RH, McGilvray KC, Hooper GJ, Puttlitz C, Easley J, Woodfield TBF. Enhanced bone formation in locally-optimised, low-stiffness additive manufactured titanium implants: An in silico and in vivo tibial advancement study. Acta Biomater 2023;156:202-13. [PMID: 35413478 DOI: 10.1016/j.actbio.2022.04.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Jia Z, Xu X, Zhu D, Zheng Y. Design, Printing, and Engineering of Regenerative Biomaterials for Personalized Bone Healthcare. Progress in Materials Science 2023. [DOI: 10.1016/j.pmatsci.2023.101072] [Reference Citation Analysis]
5 Novak N, Al-ketan O, Mauko A, Yilmaz YE, Krstulović-opara L, Tanaka S, Hokamoto K, Rowshan R, Al-rub RA, Vesenjak M, Ren Z. Impact loading of additively manufactured metallic stochastic sheet-based cellular material. International Journal of Impact Engineering 2023. [DOI: 10.1016/j.ijimpeng.2023.104527] [Reference Citation Analysis]
6 Salama MC, Alves FP, Reis L, Deus AM, Silva MB, Santos C, Carmezim MJ, Fátima Vaz M. Finite element simulations of mechanical behaviour and degradation of iron lattices. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 2022. [DOI: 10.1177/14644207221142024] [Reference Citation Analysis]
7 Vyavahare S, Mahesh V, Mahesh V, Harursampath D. Additively Manufactured Meta-biomaterials: A State-of-the-Art Review. Composite Structures 2022. [DOI: 10.1016/j.compstruct.2022.116491] [Reference Citation Analysis]
8 Alaña M, Lopez-arancibia A, Ghouse S, Rodriguez-florez N, de Galarreta SR. Additively manufactured lattice structures with controlled transverse isotropy for orthopedic porous implants. Computers in Biology and Medicine 2022. [DOI: 10.1016/j.compbiomed.2022.105761] [Reference Citation Analysis]
9 Verma R, Kumar J, Singh NK, Rai SK, Saxena KK, Xu J. Design and Analysis of Biomedical Scaffolds Using TPMS-Based Porous Structures Inspired from Additive Manufacturing. Coatings 2022;12:839. [DOI: 10.3390/coatings12060839] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Oosterbeek RN, Jeffers JR. StrutSurf: A tool for analysis of strut morphology and surface roughness in additively manufactured lattices. SoftwareX 2022;18:101043. [DOI: 10.1016/j.softx.2022.101043] [Reference Citation Analysis]
11 Polakova D, Capek L, Bartos M, Kejzlar P, Rysova M, Martinova L, Sevcu A. The stiffness variability of a silk fibroin scaffold during bone cell proliferation. Proc Inst Mech Eng H 2022;236:539-546. [DOI: 10.1177/09544119211070345] [Reference Citation Analysis]
12 Moiduddin K, Mian SH, Elseufy SM, Abdo BMA, Aboudaif MK, Alkhalefah H. Craniofacial Reconstruction with Personalized Lightweight Scaffold Fabricated Using Electron-Beam Additive Manufacturing. Metals 2022;12:552. [DOI: 10.3390/met12040552] [Reference Citation Analysis]
13 You Q, Lu M, Min L, Zhang Y, Wang J, Wang Y, Zheng C, Zhou Y, Tu C. Hip-Preserved Reconstruction Using a Customized Cementless Intercalary Endoprosthesis With an Intra-Neck Curved Stem in Patients With an Ultrashort Proximal Femur: Midterm Follow-Up Outcomes. Front Bioeng Biotechnol 2022;10:795485. [DOI: 10.3389/fbioe.2022.795485] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Munford MJ, Stoddart JC, Liddle AD, Cobb JP, Jeffers JRT. Total and partial knee arthroplasty implants that maintain native load transfer in the tibia. Bone Joint Res 2022;11:91-101. [PMID: 35168367 DOI: 10.1302/2046-3758.112.BJR-2021-0304.R1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Inchingolo F, Hazballa D, Inchingolo AD, Malcangi G, Marinelli G, Mancini A, Maggiore ME, Bordea IR, Scarano A, Farronato M, Tartaglia GM, Lorusso F, Inchingolo AM, Dipalma G. Innovative Concepts and Recent Breakthrough for Engineered Graft and Constructs for Bone Regeneration: A Literature Systematic Review. Materials (Basel) 2022;15:1120. [PMID: 35161065 DOI: 10.3390/ma15031120] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
16 Arjunan A, Baroutaji A, Robinson J, Wang C. Antibacterial Biomaterials in Orthopedics. Encyclopedia of Smart Materials 2022. [DOI: 10.1016/b978-0-12-815732-9.00131-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Rodriguez-contreras A, Punset M, Manero JM, Calero JA, Torres D. Biomedical Applications of Powder Metallurgy. Encyclopedia of Materials: Metals and Alloys 2022. [DOI: 10.1016/b978-0-12-819726-4.00125-3] [Reference Citation Analysis]
18 Sarkar N, Zhou Y, Grayson W. 3D Printing for Craniofacial Bone Regeneration. 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine 2022. [DOI: 10.1016/b978-0-12-824552-1.00008-6] [Reference Citation Analysis]
19 Foroughi AH, Razavi MJ. Shape optimization of orthopedic porous scaffolds to enhance mechanical performance. Journal of the Mechanical Behavior of Biomedical Materials 2022. [DOI: 10.1016/j.jmbbm.2022.105098] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Cao C, Huang P, Prasopthum A, Parsons AJ, Ai F, Yang J. Characterisation of bone regeneration in 3D printed ductile PCL/PEG/hydroxyapatite scaffolds with high ceramic microparticle concentrations. Biomater Sci 2021;10:138-52. [PMID: 34806738 DOI: 10.1039/d1bm01645h] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
21 McGregor M, Patel S, McLachlin S, Vlasea M. Data related to architectural bone parameters and the relationship to Ti lattice design for powder bed fusion additive manufacturing. Data Brief 2021;39:107633. [PMID: 34917699 DOI: 10.1016/j.dib.2021.107633] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Davoodi E, Montazerian H, Mirhakimi AS, Zhianmanesh M, Ibhadode O, Shahabad SI, Esmaeilizadeh R, Sarikhani E, Toorandaz S, Sarabi SA, Nasiri R, Zhu Y, Kadkhodapour J, Li B, Khademhosseini A, Toyserkani E. Additively manufactured metallic biomaterials. Bioactive Materials 2021. [DOI: 10.1016/j.bioactmat.2021.12.027] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
23 Al-ketan O, Lee D, Abu Al-rub RK. Mechanical properties of additively-manufactured sheet-based gyroidal stochastic cellular materials. Additive Manufacturing 2021;48:102418. [DOI: 10.1016/j.addma.2021.102418] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
24 Tan N, van Arkel RJ. Topology Optimisation for Compliant Hip Implant Design and Reduced Strain Shielding. Materials (Basel) 2021;14:7184. [PMID: 34885337 DOI: 10.3390/ma14237184] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
25 Niemczyk-Soczynska B, Zaszczyńska A, Zabielski K, Sajkiewicz P. Hydrogel, Electrospun and Composite Materials for Bone/Cartilage and Neural Tissue Engineering. Materials (Basel) 2021;14:6899. [PMID: 34832300 DOI: 10.3390/ma14226899] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
26 Ghouse S, Oosterbeek RN, Mehmood AT, Vecchiato F, Dye D, Jeffers JR. Vacuum heat treatments of titanium porous structures. Additive Manufacturing 2021;47:102262. [DOI: 10.1016/j.addma.2021.102262] [Reference Citation Analysis]
27 Mcgregor M, Patel S, Mclachlin S, Mihaela Vlasea. Architectural bone parameters and the relationship to titanium lattice design for powder bed fusion additive manufacturing. Additive Manufacturing 2021;47:102273. [DOI: 10.1016/j.addma.2021.102273] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
28 Hossain U, Ghouse S, Nai K, Jeffers JRT. Mechanical and morphological properties of additively manufactured SS316L and Ti6Al4V micro-struts as a function of build angle. Addit Manuf 2021;46:None. [PMID: 34603974 DOI: 10.1016/j.addma.2021.102050] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Torres-sanchez C, Borgman JM, Sargeant B, Bell H, Alabort E, Lindsay C, Conway PP. Comparison of Selective Laser Melted Commercially Pure Titanium Sheet‐Based Triply Periodic Minimal Surfaces and Trabecular‐Like Strut‐Based Scaffolds for Tissue Engineering. Adv Eng Mater 2022;24:2100527. [DOI: 10.1002/adem.202100527] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
30 Burge TA, Jeffers JRT, Myant CW. Development of an Automated Mass-Customization Pipeline for Knee Replacement Surgery Using Biplanar X-Rays. Journal of Mechanical Design 2022;144:021702. [DOI: 10.1115/1.4052192] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Zheng J, Zhao H, Dong E, Kang J, Liu C, Sun C, Li D, Wang L. Additively-manufactured PEEK/HA porous scaffolds with highly-controllable mechanical properties and excellent biocompatibility. Mater Sci Eng C Mater Biol Appl 2021;128:112333. [PMID: 34474884 DOI: 10.1016/j.msec.2021.112333] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
32 Ruiz de Galarreta S, Doyle RJ, Jeffers J, Ghouse S. Laser powder bed fusion of porous graded structures: A comparison between computational and experimental analysis. J Mech Behav Biomed Mater 2021;123:104784. [PMID: 34419887 DOI: 10.1016/j.jmbbm.2021.104784] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Sarna-Boś K, Skic K, Sobieszczański J, Boguta P, Chałas R. Contemporary Approach to the Porosity of Dental Materials and Methods of Its Measurement. Int J Mol Sci 2021;22:8903. [PMID: 34445606 DOI: 10.3390/ijms22168903] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
34 Rana M, Karmakar SK, Pal B, Datta P, Roychowdhury A, Bandyopadhyay A. Design and manufacturing of biomimetic porous metal implants. Journal of Materials Research 2021;36:3952-62. [DOI: 10.1557/s43578-021-00307-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
35 Amano H, Yamaguchi Y, Ishimoto T, Nakano T. Reduction of Spatter Generation Using Atmospheric Gas in Laser Powder Bed Fusion of Ti–6Al–4V. Mater Trans 2021;62:1225-30. [DOI: 10.2320/matertrans.mt-m2021059] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
36 García-Aznar JM, Nasello G, Hervas-Raluy S, Pérez MÁ, Gómez-Benito MJ. Multiscale modeling of bone tissue mechanobiology. Bone 2021;151:116032. [PMID: 34118446 DOI: 10.1016/j.bone.2021.116032] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
37 Munford MJ, Xiao D, Jeffers JRT. Lattice implants that generate homeostatic and remodeling strains in bone. J Orthop Res 2021. [PMID: 34086355 DOI: 10.1002/jor.25114] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Rodriguez-contreras A, Punset M, Calero JA, Gil FJ, Ruperez E, Manero JM. Powder metallurgy with space holder for porous titanium implants: A review. Journal of Materials Science & Technology 2021;76:129-49. [DOI: 10.1016/j.jmst.2020.11.005] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 16.5] [Reference Citation Analysis]
39 Wang J, Min L, Lu M, Zhang Y, Lin J, Luo Y, Zhou Y, Tu C. Three-dimensional-printed custom-made hemipelvic endoprosthesis for the revision of the aseptic loosening and fracture of modular hemipelvic endoprosthesis: a pilot study. BMC Surg 2021;21:262. [PMID: 34039325 DOI: 10.1186/s12893-021-01257-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, Li Y, Liu J, Wang Y, Zhao Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact Mater 2021;6:4110-40. [PMID: 33997497 DOI: 10.1016/j.bioactmat.2021.03.043] [Cited by in Crossref: 91] [Cited by in F6Publishing: 85] [Article Influence: 45.5] [Reference Citation Analysis]
41 Zhang Z, Li Y, He P, Liu F, Li L, Zhang H, Ji P, Yang S. Nanotube-decorated hierarchical tantalum scaffold promoted early osseointegration. Nanomedicine 2021;35:102390. [PMID: 33857685 DOI: 10.1016/j.nano.2021.102390] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
42 Alsheghri A, Reznikov N, Piché N, McKee MD, Tamimi F, Song J. Optimization of 3D network topology for bioinspired design of stiff and lightweight bone-like structures. Mater Sci Eng C Mater Biol Appl 2021;123:112010. [PMID: 33812629 DOI: 10.1016/j.msec.2021.112010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
43 Wang J, Dai X, Peng Y, Liu M, Lu F, Yang X, Gou Z, Ye J. Digital light processing strength-strong ultra-thin bioceramic scaffolds for challengeable orbital bone regeneration and repair in Situ. Applied Materials Today 2021;22:100889. [DOI: 10.1016/j.apmt.2020.100889] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
44 Trueba P, Navarro C, Rodríguez-ortiz JA, Beltrán AM, García-garcía FJ, Torres Y. Fabrication and characterization of superficially modified porous dental implants. Surface and Coatings Technology 2021;408:126796. [DOI: 10.1016/j.surfcoat.2020.126796] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
45 Amano H, Yamaguchi Y, Ishimoto T, Nakano T. Effect of Atmosphere Gas on Microstructure in Products of 316L Au stenitic Stainless Steel Fabricated by Laser Powder Bed Fusion(LPBF). Journal of Smart Processing 2021;10:230-4. [DOI: 10.7791/jspmee.10.230] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
46 Nasello G, Vautrin A, Pitocchi J, Wesseling M, Kuiper JH, Pérez MÁ, García-Aznar JM. Mechano-driven regeneration predicts response variations in large animal model based on scaffold implantation site and individual mechano-sensitivity. Bone 2021;144:115769. [PMID: 33276152 DOI: 10.1016/j.bone.2020.115769] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
47 Entezari A, Swain MV, Gooding JJ, Roohani I, Li Q. A modular design strategy to integrate mechanotransduction concepts in scaffold-based bone tissue engineering. Acta Biomater 2020;118:100-12. [PMID: 33059100 DOI: 10.1016/j.actbio.2020.10.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
48 Lin X, Bai Y, Zhou H, Yang L. Mechano-active biomaterials for tissue repair and regeneration. Journal of Materials Science & Technology 2020;59:227-33. [DOI: 10.1016/j.jmst.2020.03.074] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
49 Hossain U, Ghouse S, Nai K, Jeffers JR. WITHDRAWN: Controlling and testing anisotropy in additively manufactured stochastic structures. Additive Manufacturing 2020. [DOI: 10.1016/j.addma.2020.101717] [Reference Citation Analysis]
50 Castro APG, Santos J, Pires T, Fernandes PR. Micromechanical Behavior of TPMS Scaffolds for Bone Tissue Engineering. Macromol Mater Eng 2020;305:2000487. [DOI: 10.1002/mame.202000487] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
51 Xiong Y, Wang W, Gao R, Zhang H, Dong L, Qin J, Wang B, Jia W, Li X. Fatigue behavior and osseointegration of porous Ti-6Al-4V scaffolds with dense core for dental application. Materials & Design 2020;195:108994. [DOI: 10.1016/j.matdes.2020.108994] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
52 Munford MJ, Ng KCG, Jeffers JRT. Mapping the Multi‐Directional Mechanical Properties of Bone in the Proximal Tibia. Adv Funct Mater 2020;30:2004323. [DOI: 10.1002/adfm.202004323] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
53 Clark JN, Heyraud A, Tavana S, Al-Jabri T, Tallia F, Clark B, Blunn GW, Cobb JP, Hansen U, Jones JR, Jeffers JRT. Exploratory Full-Field Mechanical Analysis across the Osteochondral Tissue-Biomaterial Interface in an Ovine Model. Materials (Basel) 2020;13:E3911. [PMID: 32899671 DOI: 10.3390/ma13183911] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
54 Ruiz de Galarreta S, Jeffers JR, Ghouse S. A validated finite element analysis procedure for porous structures. Materials & Design 2020;189:108546. [DOI: 10.1016/j.matdes.2020.108546] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 8.7] [Reference Citation Analysis]
55 Munford M, Hossain U, Ghouse S, Jeffers JR. Prediction of anisotropic mechanical properties for lattice structures. Additive Manufacturing 2020;32:101041. [DOI: 10.1016/j.addma.2020.101041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
56 Sotelo-mazon O, Henao J, Giraldo-betancur AL, Poblano-salas CA, Corona-castuera J. Corrosion of Biomaterials. New Challenges and Industrial Applications for Corrosion Prevention and Control 2020. [DOI: 10.4018/978-1-7998-2775-7.ch003] [Reference Citation Analysis]
57 Arjunan A, Demetriou M, Baroutaji A, Wang C. Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds. J Mech Behav Biomed Mater 2020;102:103517. [PMID: 31877520 DOI: 10.1016/j.jmbbm.2019.103517] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 16.5] [Reference Citation Analysis]