BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hilgenfeld R, Peiris M. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antiviral Res 2013;100:286-95. [PMID: 24012996 DOI: 10.1016/j.antiviral.2013.08.015] [Cited by in Crossref: 188] [Cited by in F6Publishing: 168] [Article Influence: 20.9] [Reference Citation Analysis]
Number Citing Articles
1 Liu DX, Fung TS, Chong KK, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res 2014;109:97-109. [PMID: 24995382 DOI: 10.1016/j.antiviral.2014.06.013] [Cited by in Crossref: 188] [Cited by in F6Publishing: 170] [Article Influence: 23.5] [Reference Citation Analysis]
2 Elfiky AA. SARS-CoV-2 Spike-Heat Shock Protein A5 (GRP78) Recognition may be Related to the Immersed Human Coronaviruses. Front Pharmacol. 2020;11:577467. [PMID: 33362542 DOI: 10.3389/fphar.2020.577467] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
3 Coccia EM, Battistini A. Early IFN type I response: Learning from microbial evasion strategies. Semin Immunol 2015;27:85-101. [PMID: 25869307 DOI: 10.1016/j.smim.2015.03.005] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
4 Kumar V, Shin JS, Shie JJ, Ku KB, Kim C, Go YY, Huang KF, Kim M, Liang PH. Identification and evaluation of potent Middle East respiratory syndrome coronavirus (MERS-CoV) 3CLPro inhibitors. Antiviral Res 2017;141:101-6. [PMID: 28216367 DOI: 10.1016/j.antiviral.2017.02.007] [Cited by in Crossref: 59] [Cited by in F6Publishing: 56] [Article Influence: 11.8] [Reference Citation Analysis]
5 Koba R, Suzuki S, Sato G, Sato S, Suzuki K, Maruyama S, Tohya Y. Identification and characterization of a novel bat polyomavirus in Japan. Virus Genes 2020;56:772-6. [PMID: 32816186 DOI: 10.1007/s11262-020-01789-7] [Reference Citation Analysis]
6 Chang C. Unmet needs in respiratory diseases : "You can't know where you are going until you know where you have been"--Anonymous. Clin Rev Allergy Immunol 2013;45:303-13. [PMID: 24293395 DOI: 10.1007/s12016-013-8399-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
7 Jurkovich GJ. I Am Not Comfortable with This: 2020 Scudder Oration on Trauma. J Am Coll Surg 2021;232:231-40. [PMID: 33460750 DOI: 10.1016/j.jamcollsurg.2020.11.033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 AlMalki FA, Albukhaty S, Alyamani AA, Khalaf MN, Thomas S. The relevant information about the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using the five-question approach (when, where, what, why, and how) and its impact on the environment. Environ Sci Pollut Res Int 2022. [PMID: 35175517 DOI: 10.1007/s11356-022-18868-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Li Y, Zhao Y, Wang C, Zheng X, Wang H, Gai W, Jin H, Yan F, Qiu B, Gao Y, Li N, Yang S, Xia X. Packaging of Rift Valley fever virus pseudoviruses and establishment of a neutralization assay method. J Vet Sci 2018;19:200-6. [PMID: 28693302 DOI: 10.4142/jvs.2018.19.2.200] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
10 Li J, Liu W. Puzzle of highly pathogenic human coronaviruses (2019-nCoV). Protein Cell 2020;11:235-8. [PMID: 32088858 DOI: 10.1007/s13238-020-00693-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
11 Chang YS, Ko BH, Ju JC, Chang HH, Huang SH, Lin CW. SARS Unique Domain (SUD) of Severe Acute Respiratory Syndrome Coronavirus Induces NLRP3 Inflammasome-Dependent CXCL10-Mediated Pulmonary Inflammation. Int J Mol Sci 2020;21:E3179. [PMID: 32365944 DOI: 10.3390/ijms21093179] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 14.5] [Reference Citation Analysis]
12 Modjarrad K. Treatment strategies for Middle East respiratory syndrome coronavirus. J Virus Erad 2016;2:1-4. [PMID: 26866060 [PMID: 26866060 DOI: 10.1016/s2055-6640(20)30696-8] [Cited by in Crossref: 23] [Article Influence: 3.8] [Reference Citation Analysis]
13 Kilianski A, Baker SC. Cell-based antiviral screening against coronaviruses: developing virus-specific and broad-spectrum inhibitors. Antiviral Res 2014;101:105-12. [PMID: 24269477 DOI: 10.1016/j.antiviral.2013.11.004] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 4.6] [Reference Citation Analysis]
14 Wang Y, Zheng J, Islam MS, Yang Y, Hu Y, Chen X. The role of CD4+FoxP3+ regulatory T cells in the immunopathogenesis of COVID-19: implications for treatment. Int J Biol Sci 2021;17:1507-20. [PMID: 33907514 DOI: 10.7150/ijbs.59534] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Zhao J, Wang L, Schank M, Dang X, Lu Z, Cao D, Khanal S, Nguyen LN, Nguyen LNT, Zhang J, Zhang Y, Adkins JL, Baird EM, Wu XY, Ning S, Gazzar ME, Moorman JP, Yao ZQ. SARS-CoV-2 specific memory T cell epitopes identified in COVID-19-recovered subjects. Virus Res 2021;304:198508. [PMID: 34329696 DOI: 10.1016/j.virusres.2021.198508] [Reference Citation Analysis]
16 Liu Q, Du Z, Zhu S, Zhao W, Chen H, Xue Y. Metagenomic evidence for the co-existence of SARS and H1N1 in patients from 2007-2012 flu seasons in France. Biosaf Health 2021. [PMID: 34778742 DOI: 10.1016/j.bsheal.2021.11.002] [Reference Citation Analysis]
17 Békés M, Rut W, Kasperkiewicz P, Mulder MP, Ovaa H, Drag M, Lima CD, Huang TT. SARS hCoV papain-like protease is a unique Lys48 linkage-specific di-distributive deubiquitinating enzyme. Biochem J 2015;468:215-26. [PMID: 25764917 DOI: 10.1042/BJ20141170] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 5.9] [Reference Citation Analysis]
18 Zheng T, Yang C, Wang HY, Chen X, Yu L, Wu ZL, Sun H. Clinical characteristics and outcomes of COVID-19 patients with gastrointestinal symptoms admitted to Jianghan Fangcang Shelter Hospital in Wuhan, China. J Med Virol. 2020;92:2735-2741. [PMID: 32510173 DOI: 10.1002/jmv.26146] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
19 Shuipys T, Montazeri N. Optimized Protocols for the Propagation and Quantification of Infectious Murine Hepatitis Virus (MHV-A59) Using NCTC Clone 1469 and 929 Cells. MPs 2022;5:5. [DOI: 10.3390/mps5010005] [Reference Citation Analysis]
20 Abuhammad A, Al-Aqtash RA, Anson BJ, Mesecar AD, Taha MO. Computational modeling of the bat HKU4 coronavirus 3CLpro inhibitors as a tool for the development of antivirals against the emerging Middle East respiratory syndrome (MERS) coronavirus. J Mol Recognit 2017;30. [PMID: 28608547 DOI: 10.1002/jmr.2644] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
21 Llanes A, Restrepo CM, Caballero Z, Rajeev S, Kennedy MA, Lleonart R. Betacoronavirus Genomes: How Genomic Information has been Used to Deal with Past Outbreaks and the COVID-19 Pandemic. Int J Mol Sci 2020;21:E4546. [PMID: 32604724 DOI: 10.3390/ijms21124546] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
22 Chen D, Hou Z, Jiang D, Zheng M, Li G, Zhang Y, Li R, Lin H, Chang J, Zeng H, Guo JT, Zhao X. GILT restricts the cellular entry mediated by the envelope glycoproteins of SARS-CoV, Ebola virus and Lassa fever virus. Emerg Microbes Infect 2019;8:1511-23. [PMID: 31631785 DOI: 10.1080/22221751.2019.1677446] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
23 Dong W, Xie W, Liu Y, Sui B, Zhang H, Liu L, Tan Y, Tong X, Fu ZF, Yin P, Fang L, Peng G. Receptor tyrosine kinase inhibitors block proliferation of TGEV mainly through p38 mitogen-activated protein kinase pathways. Antiviral Res 2020;173:104651. [PMID: 31751591 DOI: 10.1016/j.antiviral.2019.104651] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
24 Hoffman T, Nissen K, Krambrich J, Rönnberg B, Akaberi D, Esmaeilzadeh M, Salaneck E, Lindahl J, Lundkvist Å. Evaluation of a COVID-19 IgM and IgG rapid test; an efficient tool for assessment of past exposure to SARS-CoV-2. Infect Ecol Epidemiol 2020;10:1754538. [PMID: 32363011 DOI: 10.1080/20008686.2020.1754538] [Cited by in Crossref: 56] [Cited by in F6Publishing: 62] [Article Influence: 28.0] [Reference Citation Analysis]
25 Shao S, Xu Q, Yu X, Pan R, Chen Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions.Pharmacol Ther. 2020;209:107503. [PMID: 32061923 DOI: 10.1016/j.pharmthera.2020.107503] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 17.5] [Reference Citation Analysis]
26 Zhao X, Sehgal M, Hou Z, Cheng J, Shu S, Wu S, Guo F, Le Marchand SJ, Lin H, Chang J, Guo JT. Identification of Residues Controlling Restriction versus Enhancing Activities of IFITM Proteins on Entry of Human Coronaviruses. J Virol 2018;92:e01535-17. [PMID: 29263263 DOI: 10.1128/JVI.01535-17] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 11.3] [Reference Citation Analysis]
27 Kabinger F, Stiller C, Schmitzová J, Dienemann C, Kokic G, Hillen HS, Höbartner C, Cramer P. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol 2021. [PMID: 34381216 DOI: 10.1038/s41594-021-00651-0] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
28 Ullrich S, Sasi VM, Mahawaththa MC, Ekanayake KB, Morewood R, George J, Shuttleworth L, Zhang X, Whitefield C, Otting G, Jackson C, Nitsche C. Challenges of short substrate analogues as SARS-CoV-2 main protease inhibitors. Bioorg Med Chem Lett 2021;50:128333. [PMID: 34418570 DOI: 10.1016/j.bmcl.2021.128333] [Reference Citation Analysis]
29 Jamieson AM. Host resilience to emerging coronaviruses. Future Virol 2016;11:529-34. [PMID: 32201496 DOI: 10.2217/fvl-2016-0060] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
30 Davis IM. SARS-CoV: Lessons learned; opportunities missed for SARS-CoV-2. Rev Med Virol 2021;31:1-6. [PMID: 32808446 DOI: 10.1002/rmv.2152] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Miguel E, Chevalier V, Ayelet G, Ben Bencheikh MN, Boussini H, Chu DK, El Berbri I, Fassi-Fihri O, Faye B, Fekadu G, Grosbois V, Ng BC, Perera RA, So TY, Traore A, Roger F, Peiris M. Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015. Euro Surveill 2017;22:30498. [PMID: 28382915 DOI: 10.2807/1560-7917.ES.2017.22.13.30498] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 7.8] [Reference Citation Analysis]
32 Bhandari B, Neupane S, Khanal R, Lnu K, Wert Y, Komanduri S. COVID-19 pericarditis mimicking an acute myocardial infarction: a case report and review of literature. J Community Hosp Intern Med Perspect 2021;11:315-21. [PMID: 34191989 DOI: 10.1080/20009666.2021.1896429] [Reference Citation Analysis]
33 Khalifa SAM, Yosri N, El-Mallah MF, Ghonaim R, Guo Z, Musharraf SG, Du M, Khatib A, Xiao J, Saeed A, El-Seedi HHR, Zhao C, Efferth T, El-Seedi HR. Screening for natural and derived bio-active compounds in preclinical and clinical studies: One of the frontlines of fighting the coronaviruses pandemic. Phytomedicine 2021;85:153311. [PMID: 33067112 DOI: 10.1016/j.phymed.2020.153311] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
34 Román GC, Spencer PS, Reis J, Buguet A, Faris MEA, Katrak SM, Láinez M, Medina MT, Meshram C, Mizusawa H, Öztürk S, Wasay M; WFN Environmental Neurology Specialty Group. The neurology of COVID-19 revisited: A proposal from the Environmental Neurology Specialty Group of the World Federation of Neurology to implement international neurological registries. J Neurol Sci 2020;414:116884. [PMID: 32464367 DOI: 10.1016/j.jns.2020.116884] [Cited by in Crossref: 89] [Cited by in F6Publishing: 81] [Article Influence: 44.5] [Reference Citation Analysis]
35 Halder P, Pal U, Paladhi P, Dutta S, Paul P, Pal S, Das D, Ganguly A, IshitaDutta, SayarneelMandal, Ray A, Ghosh S. Evaluation of potency of the selected bioactive molecules from Indian medicinal plants with MPro of SARS-CoV-2 through in silico analysis. J Ayurveda Integr Med 2021. [PMID: 34054246 DOI: 10.1016/j.jaim.2021.05.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Hempel L, Molnar J, Robert S, Veloso J, Trepotec Z, Englisch S, Weinzierl P, Schick C, Milani V, Schweneker K, Fleischmann B, Scheiber J, Gandorfer B, Kleespies A, Hempel D, Riedmann K, Piehler A. Rare SARS-CoV-2 antibody development in cancer patients. Semin Oncol 2021:S0093-7754(20)30124-X. [PMID: 33500147 DOI: 10.1053/j.seminoncol.2020.12.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Daczkowski CM, Goodwin OY, Dzimianski JV, Farhat JJ, Pegan SD. Structurally Guided Removal of DeISGylase Biochemical Activity from Papain-Like Protease Originating from Middle East Respiratory Syndrome Coronavirus. J Virol 2017;91:e01067-17. [PMID: 28931677 DOI: 10.1128/JVI.01067-17] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
38 Madru C, Tekpinar AD, Rosario S, Czernecki D, Brûlé S, Sauguet L, Delarue M. Fast and efficient purification of SARS-CoV-2 RNA dependent RNA polymerase complex expressed in Escherichia coli. PLoS One 2021;16:e0250610. [PMID: 33914787 DOI: 10.1371/journal.pone.0250610] [Reference Citation Analysis]
39 Krichel B, Falke S, Hilgenfeld R, Redecke L, Uetrecht C. Processing of the SARS-CoV pp1a/ab nsp7-10 region. Biochem J. 2020;477:1009-1019. [PMID: 32083638 DOI: 10.1042/bcj20200029] [Cited by in Crossref: 48] [Cited by in F6Publishing: 28] [Article Influence: 24.0] [Reference Citation Analysis]
40 Szabolcs M, Sauter JL, Frosina D, Geronimo JA, Hernandez E, Selbs E, Rapkiewicz AV, Rekhtman N, Baine MK, Jäger E, Travis WD, Jungbluth AA. Identification of Immunohistochemical Reagents for In Situ Protein Expression Analysis of Coronavirus-associated Changes in Human Tissues. Appl Immunohistochem Mol Morphol 2021;29:5-12. [PMID: 33086222 DOI: 10.1097/PAI.0000000000000878] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
41 Lekana-Douki SE, Nkoghe D, Drosten C, Ngoungou EB, Drexler JF, Leroy EM. Viral etiology and seasonality of influenza-like illness in Gabon, March 2010 to June 2011. BMC Infect Dis 2014;14:373. [PMID: 25000832 DOI: 10.1186/1471-2334-14-373] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 4.3] [Reference Citation Analysis]
42 Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY. Zoonotic origins of human coronaviruses. Int J Biol Sci 2020;16:1686-97. [PMID: 32226286 DOI: 10.7150/ijbs.45472] [Cited by in Crossref: 293] [Cited by in F6Publishing: 248] [Article Influence: 146.5] [Reference Citation Analysis]
43 Dwivedi R, Athe R, Mahesh K, Modem PK. The incubation period of coronavirus disease (COVID-19): A tremendous public health threat-Forecasting from publicly available case data in India. J Public Aff 2021;:e2619. [PMID: 33786017 DOI: 10.1002/pa.2619] [Reference Citation Analysis]
44 Shi CS, Qi HY, Boularan C, Huang NN, Abu-Asab M, Shelhamer JH, Kehrl JH. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J Immunol 2014;193:3080-9. [PMID: 25135833 DOI: 10.4049/jimmunol.1303196] [Cited by in Crossref: 236] [Cited by in F6Publishing: 224] [Article Influence: 29.5] [Reference Citation Analysis]
45 Skwarecki AS, Nowak MG, Milewska MJ. Amino Acid and Peptide-Based Antiviral Agents. ChemMedChem 2021. [PMID: 34254457 DOI: 10.1002/cmdc.202100397] [Reference Citation Analysis]
46 Valiquette L, Laupland KB. 10 years later... Can J Infect Dis Med Microbiol 2013;24:175-6. [PMID: 24489556 DOI: 10.1155/2013/167289] [Reference Citation Analysis]
47 Elfiky AA, Ibrahim IM, Amin FG, Ismail AM, Elshemey WM. COVID-19 and Cell Stress. Adv Exp Med Biol 2021;1318:169-78. [PMID: 33973178 DOI: 10.1007/978-3-030-63761-3_10] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
48 Kleine-Weber H, Elzayat MT, Hoffmann M, Pöhlmann S. Functional analysis of potential cleavage sites in the MERS-coronavirus spike protein. Sci Rep 2018;8:16597. [PMID: 30413791 DOI: 10.1038/s41598-018-34859-w] [Cited by in Crossref: 73] [Cited by in F6Publishing: 77] [Article Influence: 18.3] [Reference Citation Analysis]
49 Reinke LM, Spiegel M, Plegge T, Hartleib A, Nehlmeier I, Gierer S, Hoffmann M, Hofmann-Winkler H, Winkler M, Pöhlmann S. Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2. PLoS One 2017;12:e0179177. [PMID: 28636671 DOI: 10.1371/journal.pone.0179177] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 9.8] [Reference Citation Analysis]
50 Pinnock FS, Rich JB, Vasquez B, Wiegand M, Patcai J, Troyer AK, Murphy KJ. Neurocognitive Outcome Following Recovery from Severe Acute Respiratory Syndrome - Coronavirus-1 (SARS-CoV-1). J Int Neuropsychol Soc 2021;:1-11. [PMID: 34488921 DOI: 10.1017/S1355617721001107] [Reference Citation Analysis]
51 Zhou H, Yang J, Zhou C, Chen B, Fang H, Chen S, Zhang X, Wang L, Zhang L. A Review of SARS-CoV2: Compared With SARS-CoV and MERS-CoV. Front Med (Lausanne) 2021;8:628370. [PMID: 34950674 DOI: 10.3389/fmed.2021.628370] [Reference Citation Analysis]
52 Heo KJ, Ko HS, Jeong SB, Kim SB, Jung JH. Enriched Aerosol-to-Hydrosol Transfer for Rapid and Continuous Monitoring of Bioaerosols. Nano Lett 2021;21:1017-24. [PMID: 33444028 DOI: 10.1021/acs.nanolett.0c04096] [Reference Citation Analysis]
53 Lei J, Hilgenfeld R. Structural and mutational analysis of the interaction between the Middle-East respiratory syndrome coronavirus (MERS-CoV) papain-like protease and human ubiquitin. Virol Sin 2016;31:288-99. [PMID: 27245450 DOI: 10.1007/s12250-016-3742-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
54 Nazeam J, Mohammed EZ, Raafat M, Houssein M, Elkafoury A, Hamdy D, Jamil L. Based on Principles and Insights of COVID-19 Epidemiology, Genome Sequencing, and Pathogenesis: Retrospective Analysis of Sinigrin and ProlixinRX (Fluphenazine) Provides Off-Label Drug Candidates. SLAS Discov 2020;25:1123-40. [PMID: 32804597 DOI: 10.1177/2472555220950236] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
55 Wang LG, Wang L. Current Strategies in Treating Cytokine Release Syndrome Triggered by Coronavirus SARS-CoV-2. ITT 2022;Volume 11:23-35. [DOI: 10.2147/itt.s360151] [Reference Citation Analysis]
56 Gattarello S, Rello J. Severe viral pneumonia in adults: what is important for the ICU physician? Hospital Practice 2017;45:131-4. [DOI: 10.1080/21548331.2017.1345280] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
57 Keshavarzi Arshadi A, Webb J, Salem M, Cruz E, Calad-Thomson S, Ghadirian N, Collins J, Diez-Cecilia E, Kelly B, Goodarzi H, Yuan JS. Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development. Front Artif Intell 2020;3:65. [PMID: 33733182 DOI: 10.3389/frai.2020.00065] [Cited by in Crossref: 36] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
58 Pluskota-Karwatka D, Hoffmann M, Barciszewski J. Reducing SARS-CoV-2 Pathological Protein Activity with Small Molecules. J Pharm Anal 2021. [PMID: 33842018 DOI: 10.1016/j.jpha.2021.03.012] [Reference Citation Analysis]
59 Koteswara Rao V. Point of Care Diagnostic Devices for Rapid Detection of Novel Coronavirus (SARS-nCoV19) Pandemic: A Review. Front Nanotechnol 2021;2:593619. [DOI: 10.3389/fnano.2020.593619] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
60 Elfiky AA, Mahdy SM, Elshemey WM. Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses. J Med Virol 2017;89:1040-7. [PMID: 27864902 DOI: 10.1002/jmv.24736] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 11.0] [Reference Citation Analysis]
61 Sutton TC, Subbarao K. Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus. Virology 2015;479-480:247-58. [PMID: 25791336 DOI: 10.1016/j.virol.2015.02.030] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 8.1] [Reference Citation Analysis]
62 Pei R, Feng J, Zhang Y, Sun H, Li L, Yang X, He J, Xiao S, Xiong J, Lin Y, Wen K, Zhou H, Chen J, Rong Z, Chen X. Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection. Protein Cell. 2020;12:; 1-17. [PMID: 33314005 DOI: 10.1007/s13238-020-00811-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
63 Ullrich S, Ekanayake KB, Otting G, Nitsche C. Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Bioorg Med Chem Lett 2022;62:128629. [PMID: 35182772 DOI: 10.1016/j.bmcl.2022.128629] [Reference Citation Analysis]
64 Wang J, Han M, Wang H, Möckl L, Zeng L, Moerner WE, Qi LS. Multi-color super-resolution imaging to study human coronavirus RNA during cellular infection. bioRxiv 2021:2021. [PMID: 34127974 DOI: 10.1101/2021.06.09.447760] [Reference Citation Analysis]
65 Drexler JF, Corman VM, Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res 2014;101:45-56. [PMID: 24184128 DOI: 10.1016/j.antiviral.2013.10.013] [Cited by in Crossref: 237] [Cited by in F6Publishing: 197] [Article Influence: 26.3] [Reference Citation Analysis]
66 Daczkowski CM, Dzimianski JV, Clasman JR, Goodwin O, Mesecar AD, Pegan SD. Structural Insights into the Interaction of Coronavirus Papain-Like Proteases and Interferon-Stimulated Gene Product 15 from Different Species. J Mol Biol 2017;429:1661-83. [PMID: 28438633 DOI: 10.1016/j.jmb.2017.04.011] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 10.4] [Reference Citation Analysis]
67 Jia Z, Yan L, Ren Z, Wu L, Wang J, Guo J, Zheng L, Ming Z, Zhang L, Lou Z, Rao Z. Delicate structural coordination of the Severe Acute Respiratory Syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Res 2019;47:6538-50. [PMID: 31131400 DOI: 10.1093/nar/gkz409] [Cited by in Crossref: 134] [Cited by in F6Publishing: 112] [Article Influence: 67.0] [Reference Citation Analysis]
68 Priyadarshi H, Das R. Complexities in viral replication strategies as a potential explanation for prevalence of asymptomatic carriers in Covid-19 infections: analytical observation on SARS-Cov2 genome characteristics. Theory Biosci 2021. [PMID: 34114198 DOI: 10.1007/s12064-021-00349-3] [Reference Citation Analysis]
69 Zizza A, Recchia V, Aloisi A, Guido M. Clinical features of COVID-19 and SARS epidemics. A literature review. J Prev Med Hyg 2021;62:E13-24. [PMID: 34322612 DOI: 10.15167/2421-4248/jpmh2021.62.1.1680] [Reference Citation Analysis]
70 Pillaiyar T, Wendt LL, Manickam M, Easwaran M. The recent outbreaks of human coronaviruses: A medicinal chemistry perspective. Med Res Rev 2021;41:72-135. [PMID: 32852058 DOI: 10.1002/med.21724] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
71 Mirzaie S, Abdi F, GhavamiNejad A, Lu B, Wu XY. Covalent Antiviral Agents. Adv Exp Med Biol 2021;1322:285-312. [PMID: 34258745 DOI: 10.1007/978-981-16-0267-2_11] [Reference Citation Analysis]
72 Moabelo KL, Martin DR, Fadaka AO, Sibuyi NRS, Meyer M, Madiehe AM. Nanotechnology-Based Strategies for Effective and Rapid Detection of SARS-CoV-2. Materials (Basel) 2021;14:7851. [PMID: 34947447 DOI: 10.3390/ma14247851] [Reference Citation Analysis]
73 Shefer S, Robin A, Chemodanov A, Lebendiker M, Bostwick R, Rasmussen L, Lishner M, Gozin M, Golberg A. Fighting SARS-CoV-2 with green seaweed Ulva sp. extract: extraction protocol predetermines crude ulvan extract anti-SARS-CoV-2 inhibition properties in in vitro Vero-E6 cells assay. PeerJ 2021;9:e12398. [PMID: 34820178 DOI: 10.7717/peerj.12398] [Reference Citation Analysis]
74 Yan S, Wu G. Potential 3-chymotrypsin-like cysteine protease cleavage sites in the coronavirus polyproteins pp1a and pp1ab and their possible relevance to COVID-19 vaccine and drug development. FASEB J 2021;35:e21573. [PMID: 33913206 DOI: 10.1096/fj.202100280RR] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
75 Delgado G, Vargas J, Mercado M, Gaviria P, Álvarez C. Toward to establish selection criteria for rapid serological tests for COVID-19. Infect 2020;24:17. [DOI: 10.22354/in.v24i3.869] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
76 Bhowmik A, Biswas S, Hajra S, Saha P. In silico validation of potent phytochemical orientin as inhibitor of SARS-CoV-2 spike and host cell receptor GRP78 binding. Heliyon 2021;7:e05923. [PMID: 33458435 DOI: 10.1016/j.heliyon.2021.e05923] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Ma-Lauer Y, Carbajo-Lozoya J, Hein MY, Müller MA, Deng W, Lei J, Meyer B, Kusov Y, von Brunn B, Bairad DR, Hünten S, Drosten C, Hermeking H, Leonhardt H, Mann M, Hilgenfeld R, von Brunn A. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1. Proc Natl Acad Sci U S A 2016;113:E5192-201. [PMID: 27519799 DOI: 10.1073/pnas.1603435113] [Cited by in Crossref: 77] [Cited by in F6Publishing: 81] [Article Influence: 12.8] [Reference Citation Analysis]
78 Liu L, Wang T, Lu J. The prevalence, origin, and prevention of six human coronaviruses. Virol Sin. 2016;31:94-99. [PMID: 26920712 DOI: 10.1007/s12250-015-3687-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
79 Nikiforuk AM, Leung A, Cook BWM, Court DA, Kobasa D, Theriault SS. Rapid one-step construction of a Middle East Respiratory Syndrome (MERS-CoV) infectious clone system by homologous recombination. J Virol Methods 2016;236:178-83. [PMID: 27459876 DOI: 10.1016/j.jviromet.2016.07.022] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
80 Zhang L, Lin D, Kusov Y, Nian Y, Ma Q, Wang J, von Brunn A, Leyssen P, Lanko K, Neyts J, de Wilde A, Snijder EJ, Liu H, Hilgenfeld R. α-Ketoamides as Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure-Based Design, Synthesis, and Activity Assessment. J Med Chem 2020;63:4562-78. [PMID: 32045235 DOI: 10.1021/acs.jmedchem.9b01828] [Cited by in Crossref: 212] [Cited by in F6Publishing: 191] [Article Influence: 106.0] [Reference Citation Analysis]
81 Willman M, Kobasa D, Kindrachuk J. A Comparative Analysis of Factors Influencing Two Outbreaks of Middle Eastern Respiratory Syndrome (MERS) in Saudi Arabia and South Korea. Viruses 2019;11:E1119. [PMID: 31817037 DOI: 10.3390/v11121119] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
82 Rahman MT, Sobur MA, Islam MS, Ievy S, Hossain MJ, El Zowalaty ME, Rahman AT, Ashour HM. Zoonotic Diseases: Etiology, Impact, and Control. Microorganisms 2020;8:E1405. [PMID: 32932606 DOI: 10.3390/microorganisms8091405] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
83 Hofman P. [What place and what future for the pathology of infectious and tropical diseases in France?]. Ann Pathol 2014;34:171-82. [PMID: 24950861 DOI: 10.1016/j.annpat.2014.04.006] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
84 Heo KJ, Jeong SB, Shin J, Hwang GB, Ko HS, Kim Y, Choi DY, Jung JH. Water-Repellent TiO2-Organic Dye-Based Air Filters for Efficient Visible-Light-Activated Photochemical Inactivation against Bioaerosols. Nano Lett 2021;21:1576-83. [PMID: 33275432 DOI: 10.1021/acs.nanolett.0c03173] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
85 Birra D, Benucci M, Landolfi L, Merchionda A, Loi G, Amato P, Licata G, Quartuccio L, Triggiani M, Moscato P. COVID 19: a clue from innate immunity. Immunol Res 2020;68:161-8. [PMID: 32524333 DOI: 10.1007/s12026-020-09137-5] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 28.0] [Reference Citation Analysis]
86 de Sales Lima FE, Gil P, Pedrono M, Minet C, Kwiatek O, Campos FS, Spilki FR, Roehe PM, Franco AC, Maminiaina OF, Albina E, de Almeida RS. Diverse gammacoronaviruses detected in wild birds from Madagascar. Eur J Wildl Res 2015;61:635-9. [PMID: 32214942 DOI: 10.1007/s10344-015-0931-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
87 Shukla A, Hilgenfeld R. Acquisition of new protein domains by coronaviruses: analysis of overlapping genes coding for proteins N and 9b in SARS coronavirus. Virus Genes 2015;50:29-38. [PMID: 25410051 DOI: 10.1007/s11262-014-1139-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
88 Nourian A, Khalili H. Sofosbuvir as a potential option for the treatment of COVID-19. Acta Biomed 2020;91:236-8. [PMID: 32420958 DOI: 10.23750/abm.v91i2.9609] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
89 Hilgenfeld R. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J 2014;281:4085-96. [PMID: 25039866 DOI: 10.1111/febs.12936] [Cited by in Crossref: 267] [Cited by in F6Publishing: 244] [Article Influence: 33.4] [Reference Citation Analysis]
90 Miesbach W, Makris M. COVID-19: Coagulopathy, Risk of Thrombosis, and the Rationale for Anticoagulation. Clin Appl Thromb Hemost. 2020;26:1076029620938149. [PMID: 32677459 DOI: 10.1177/1076029620938149] [Cited by in Crossref: 90] [Cited by in F6Publishing: 80] [Article Influence: 45.0] [Reference Citation Analysis]
91 Dong R, He L, He RL, Yau SS. A Novel Approach to Clustering Genome Sequences Using Inter-nucleotide Covariance. Front Genet 2019;10:234. [PMID: 31024610 DOI: 10.3389/fgene.2019.00234] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
92 Khalili H, Nourian A, Ahmadinejad Z, Emadi Kouchak H, Jafari S, Dehghan Manshadi SA, Rasolinejad M, Kebriaeezadeh A. Efficacy and safety of sofosbuvir/ ledipasvir in treatment of patients with COVID-19; A randomized clinical trial. Acta Biomed 2020;91:e2020102. [PMID: 33525212 DOI: 10.23750/abm.v91i4.10877] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
93 Muthumani K, Falzarano D, Reuschel EL, Tingey C, Flingai S, Villarreal DO, Wise M, Patel A, Izmirly A, Aljuaid A, Seliga AM, Soule G, Morrow M, Kraynyak KA, Khan AS, Scott DP, Feldmann F, LaCasse R, Meade-White K, Okumura A, Ugen KE, Sardesai NY, Kim JJ, Kobinger G, Feldmann H, Weiner DB. A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Sci Transl Med 2015;7:301ra132. [PMID: 26290414 DOI: 10.1126/scitranslmed.aac7462] [Cited by in Crossref: 159] [Cited by in F6Publishing: 157] [Article Influence: 26.5] [Reference Citation Analysis]
94 Dong X, Soong L. Emerging and Re-emerging Zoonoses are Major and Global Challenges for Public Health. Zoonoses 2021;1. [DOI: 10.15212/zoonoses-2021-0001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
95 Chang CK, Lo SC, Wang YS, Hou MH. Recent insights into the development of therapeutics against coronavirus diseases by targeting N protein. Drug Discov Today 2016;21:562-72. [PMID: 26691874 DOI: 10.1016/j.drudis.2015.11.015] [Cited by in Crossref: 52] [Cited by in F6Publishing: 50] [Article Influence: 7.4] [Reference Citation Analysis]
96 Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res. 2018;149:58-74. [PMID: 29128390 DOI: 10.1016/j.antiviral.2017.11.001] [Cited by in Crossref: 257] [Cited by in F6Publishing: 215] [Article Influence: 51.4] [Reference Citation Analysis]
97 Gönültaş S, Karabağlı M, Baştuğ Y, Çilesiz NC, Kadıoğlu A. COVID-19 and animals: What do we know? Turk J Urol 2020. [PMID: 32420863 DOI: 10.5152/tud.2020.140520] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
98 Sato A, Ogino Y, Tanuma SI, Uchiumi F. Human microRNA hsa-miR-15b-5p targets the RNA template component of the RNA-dependent RNA polymerase structure in severe acute respiratory syndrome coronavirus 2. Nucleosides Nucleotides Nucleic Acids 2021;40:790-7. [PMID: 34263708 DOI: 10.1080/15257770.2021.1950759] [Reference Citation Analysis]
99 Jukič M, Janežič D, Bren U. Potential Novel Thioether-Amide or Guanidine-Linker Class of SARS-CoV-2 Virus RNA-Dependent RNA Polymerase Inhibitors Identified by High-Throughput Virtual Screening Coupled to Free-Energy Calculations. Int J Mol Sci 2021;22:11143. [PMID: 34681802 DOI: 10.3390/ijms222011143] [Reference Citation Analysis]
100 Bafna K, Krug RM, Montelione GT. Structural Similarity of SARS-CoV2 Mpro and HCV NS3/4A Proteases Suggests New Approaches for Identifying Existing Drugs Useful as COVID-19 Therapeutics. ChemRxiv 2020. [PMID: 32511291 DOI: 10.26434/chemrxiv.12153615] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
101 Yassine R, Makrem M, Farhat F. Active Learning and the Potential of Neural Networks Accelerate Molecular Screening for the Design of a New Molecule Effective against SARS-CoV-2. Biomed Res Int 2021;2021:6696012. [PMID: 34124259 DOI: 10.1155/2021/6696012] [Reference Citation Analysis]
102 Lehmann KC, Gulyaeva A, Zevenhoven-Dobbe JC, Janssen GM, Ruben M, Overkleeft HS, van Veelen PA, Samborskiy DV, Kravchenko AA, Leontovich AM, Sidorov IA, Snijder EJ, Posthuma CC, Gorbalenya AE. Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. Nucleic Acids Res 2015;43:8416-34. [PMID: 26304538 DOI: 10.1093/nar/gkv838] [Cited by in Crossref: 118] [Cited by in F6Publishing: 107] [Article Influence: 16.9] [Reference Citation Analysis]
103 Rajput VS, Sharma R, Kumari A, Vyas N, Prajapati V, Grover A. Engineering a multi epitope vaccine against SARS-CoV-2 by exploiting its non structural and structural proteins. J Biomol Struct Dyn 2021;:1-18. [PMID: 34038700 DOI: 10.1080/07391102.2021.1924265] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
104 Bung N, Krishnan SR, Bulusu G, Roy A. De novo design of new chemical entities for SARS-CoV-2 using artificial intelligence. Future Med Chem 2021;13:575-85. [PMID: 33590764 DOI: 10.4155/fmc-2020-0262] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
105 Naguib MM, Li R, Ling J, Grace D, Nguyen-Viet H, Lindahl JF. Live and Wet Markets: Food Access versus the Risk of Disease Emergence. Trends Microbiol 2021;29:573-81. [PMID: 33712334 DOI: 10.1016/j.tim.2021.02.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
106 Zhai T, Zhang F, Haider S, Kraut D, Huang Z. An Integrated Computational and Experimental Approach to Identifying Inhibitors for SARS-CoV-2 3CL Protease. Front Mol Biosci 2021;8:661424. [PMID: 34079818 DOI: 10.3389/fmolb.2021.661424] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
107 Kappes MA, Faaberg KS. PRRSV structure, replication and recombination: Origin of phenotype and genotype diversity. Virology 2015;479-480:475-86. [PMID: 25759097 DOI: 10.1016/j.virol.2015.02.012] [Cited by in Crossref: 122] [Cited by in F6Publishing: 120] [Article Influence: 17.4] [Reference Citation Analysis]
108 Subissi L, Imbert I, Ferron F, Collet A, Coutard B, Decroly E, Canard B. SARS-CoV ORF1b-encoded nonstructural proteins 12-16: replicative enzymes as antiviral targets. Antiviral Res 2014;101:122-30. [PMID: 24269475 DOI: 10.1016/j.antiviral.2013.11.006] [Cited by in Crossref: 95] [Cited by in F6Publishing: 81] [Article Influence: 10.6] [Reference Citation Analysis]
109 Hu Y, Ma C, Szeto T, Hurst B, Tarbet B, Wang J. Boceprevir, Calpain Inhibitors II and XII, and GC-376 Have Broad-Spectrum Antiviral Activity against Coronaviruses. ACS Infect Dis 2021;7:586-97. [PMID: 33645977 DOI: 10.1021/acsinfecdis.0c00761] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 24.0] [Reference Citation Analysis]
110 Market M, Angka L, Martel AB, Bastin D, Olanubi O, Tennakoon G, Boucher DM, Ng J, Ardolino M, Auer RC. Flattening the COVID-19 Curve With Natural Killer Cell Based Immunotherapies. Front Immunol 2020;11:1512. [PMID: 32655581 DOI: 10.3389/fimmu.2020.01512] [Cited by in Crossref: 57] [Cited by in F6Publishing: 52] [Article Influence: 28.5] [Reference Citation Analysis]
111 Erdem Ö, Eş I, Saylan Y, Inci F. Unifying the Efforts of Medicine, Chemistry, and Engineering in Biosensing Technologies to Tackle the Challenges of the COVID-19 Pandemic. Anal Chem 2021. [PMID: 34874149 DOI: 10.1021/acs.analchem.1c04454] [Reference Citation Analysis]
112 Majumder J, Minko T. Targeted Nanotherapeutics for Respiratory Diseases: Cancer, Fibrosis, and Coronavirus. Adv Ther (Weinh) 2020;:2000203. [PMID: 33173809 DOI: 10.1002/adtp.202000203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
113 Ullrich S, Nitsche C. The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett 2020;30:127377. [PMID: 32738988 DOI: 10.1016/j.bmcl.2020.127377] [Cited by in Crossref: 147] [Cited by in F6Publishing: 120] [Article Influence: 73.5] [Reference Citation Analysis]
114 Khan J, Asoom LIA, Khan M, Chakrabartty I, Dandoti S, Rudrapal M, Zothantluanga JH. Evolution of RNA viruses from SARS to SARS-CoV-2 and diagnostic techniques for COVID-19: a review. Beni Suef Univ J Basic Appl Sci 2021;10:60. [PMID: 34642633 DOI: 10.1186/s43088-021-00150-7] [Reference Citation Analysis]
115 Kusov Y, Tan J, Alvarez E, Enjuanes L, Hilgenfeld R. A G-quadruplex-binding macrodomain within the "SARS-unique domain" is essential for the activity of the SARS-coronavirus replication-transcription complex. Virology 2015;484:313-22. [PMID: 26149721 DOI: 10.1016/j.virol.2015.06.016] [Cited by in Crossref: 77] [Cited by in F6Publishing: 64] [Article Influence: 11.0] [Reference Citation Analysis]
116 Cho YS, Hong SC, Choi J, Jung JH. Development of an automated wet-cyclone system for rapid, continuous and enriched bioaerosol sampling and its application to real-time detection. Sens Actuators B Chem 2019;284:525-33. [PMID: 32288254 DOI: 10.1016/j.snb.2018.12.155] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
117 Malone B, Urakova N, Snijder EJ, Campbell EA. Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol 2022;23:21-39. [PMID: 34824452 DOI: 10.1038/s41580-021-00432-z] [Reference Citation Analysis]
118 Chen X, Hu Mt W, Yang M, Ling J, Zhang Y, Deng L, Li J, Lundkvist Å, Lindahl JF, Xiong Y. Risk factors for the delayed viral clearance in COVID-19 patients. J Clin Hypertens (Greenwich) 2021;23:1483-9. [PMID: 34171164 DOI: 10.1111/jch.14308] [Reference Citation Analysis]
119 Hatmal MM, Abuyaman O, Taha M. Docking-generated multiple ligand poses for bootstrapping bioactivity classifying Machine Learning: Repurposing covalent inhibitors for COVID-19-related TMPRSS2 as case study. Comput Struct Biotechnol J 2021;19:4790-824. [PMID: 34426763 DOI: 10.1016/j.csbj.2021.08.023] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
120 Bafna K, Krug RM, Montelione GT. Structural Similarity of SARS-CoV2 Mpro and HCV NS3/4A Proteases Suggests New Approaches for Identifying Existing Drugs Useful as COVID-19 Therapeutics. ChemRxiv 2020. [PMID: 32511291 DOI: 10.26434/chemrxiv.12153615] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
121 Adhikari U, Chabrelie A, Weir M, Boehnke K, McKenzie E, Ikner L, Wang M, Wang Q, Young K, Haas CN, Rose J, Mitchell J. A Case Study Evaluating the Risk of Infection from Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) in a Hospital Setting Through Bioaerosols. Risk Anal 2019;39:2608-24. [PMID: 31524301 DOI: 10.1111/risa.13389] [Cited by in Crossref: 54] [Cited by in F6Publishing: 43] [Article Influence: 18.0] [Reference Citation Analysis]
122 McDonald I, Murray SM, Reynolds CJ, Altmann DM, Boyton RJ. Comparative systematic review and meta-analysis of reactogenicity, immunogenicity and efficacy of vaccines against SARS-CoV-2. NPJ Vaccines 2021;6:74. [PMID: 33986272 DOI: 10.1038/s41541-021-00336-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
123 de Lamballerie X. Coordinating the clinical management of imported human cases suspected of being infected with a highly pathogenic virus such as Ebola. Clin Microbiol Infect 2014;20:O794-5. [PMID: 25273076 DOI: 10.1111/1469-0691.12792] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
124 Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW 3rd, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018;3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Cited by in Crossref: 85] [Cited by in F6Publishing: 63] [Article Influence: 21.3] [Reference Citation Analysis]
125 Ghazy RM, Ashmawy R, Hamdy NA, Elhadi YAM, Reyad OA, Elmalawany D, Almaghraby A, Shaaban R, Taha SHN. Efficacy and Effectiveness of SARS-CoV-2 Vaccines: A Systematic Review and Meta-Analysis. Vaccines 2022;10:350. [DOI: 10.3390/vaccines10030350] [Reference Citation Analysis]
126 Soonnarong R, Thongpan I, Payungporn S, Vuthitanachot C, Vuthitanachot V, Vichiwattana P, Vongpunsawad S, Poovorawan Y. Molecular epidemiology and characterization of human coronavirus in Thailand, 2012-2013. Springerplus 2016;5:1420. [PMID: 27625974 DOI: 10.1186/s40064-016-3101-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
127 Ghosh AK, Brindisi M, Shahabi D, Chapman ME, Mesecar AD. Drug Development and Medicinal Chemistry Efforts toward SARS-Coronavirus and Covid-19 Therapeutics. ChemMedChem 2020;15:907-32. [PMID: 32324951 DOI: 10.1002/cmdc.202000223] [Cited by in Crossref: 105] [Cited by in F6Publishing: 84] [Article Influence: 52.5] [Reference Citation Analysis]
128 Ling J, Hickman RA, Li J, Lu X, Lindahl JF, Lundkvist Å, Järhult JD. Spatio-Temporal Mutational Profile Appearances of Swedish SARS-CoV-2 during the Early Pandemic. Viruses 2020;12:E1026. [PMID: 32937868 DOI: 10.3390/v12091026] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
129 Vijayan R, Gourinath S. Structure-based inhibitor screening of natural products against NSP15 of SARS-CoV-2 revealed thymopentin and oleuropein as potent inhibitors. J Proteins Proteom 2021;:1-10. [PMID: 33776343 DOI: 10.1007/s42485-021-00059-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
130 Tahir Ul Qamar M, Saleem S, Ashfaq UA, Bari A, Anwar F, Alqahtani S. Epitope-based peptide vaccine design and target site depiction against Middle East Respiratory Syndrome Coronavirus: an immune-informatics study. J Transl Med 2019;17:362. [PMID: 31703698 DOI: 10.1186/s12967-019-2116-8] [Cited by in Crossref: 69] [Cited by in F6Publishing: 62] [Article Influence: 23.0] [Reference Citation Analysis]
131 Gierer S, Müller MA, Heurich A, Ritz D, Springstein BL, Karsten CB, Schendzielorz A, Gnirß K, Drosten C, Pöhlmann S. Inhibition of proprotein convertases abrogates processing of the middle eastern respiratory syndrome coronavirus spike protein in infected cells but does not reduce viral infectivity. J Infect Dis 2015;211:889-97. [PMID: 25057042 DOI: 10.1093/infdis/jiu407] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 3.9] [Reference Citation Analysis]
132 Athmer J, Fehr AR, Grunewald M, Smith EC, Denison MR, Perlman S. In Situ Tagged nsp15 Reveals Interactions with Coronavirus Replication/Transcription Complex-Associated Proteins. mBio 2017;8:e02320-16. [PMID: 28143984 DOI: 10.1128/mBio.02320-16] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 5.6] [Reference Citation Analysis]
133 Poduri R, Joshi G, Jagadeesh G. Drugs targeting various stages of the SARS-CoV-2 life cycle: Exploring promising drugs for the treatment of Covid-19. Cell Signal 2020;74:109721. [PMID: 32711111 DOI: 10.1016/j.cellsig.2020.109721] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 21.5] [Reference Citation Analysis]
134 Dimaio D. Is virology dead? mBio 2014;5:e01003-14. [PMID: 24667711 DOI: 10.1128/mBio.01003-14] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
135 Lei J, Ma-Lauer Y, Han Y, Thoms M, Buschauer R, Jores J, Thiel V, Beckmann R, Deng W, Leonhardt H, Hilgenfeld R, von Brunn A. The SARS-unique domain (SUD) of SARS-CoV and SARS-CoV-2 interacts with human Paip1 to enhance viral RNA translation. EMBO J 2021;40:e102277. [PMID: 33876849 DOI: 10.15252/embj.2019102277] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
136 Aktas B, Aslim B. Gut-lung axis and dysbiosis in COVID-19. Turk J Biol 2020;44:265-72. [PMID: 32595361 DOI: 10.3906/biy-2005-102] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 15.5] [Reference Citation Analysis]
137 Chen J, Malone B, Llewellyn E, Grasso M, Shelton PMM, Olinares PDB, Maruthi K, Eng ET, Vatandaslar H, Chait BT, Kapoor TM, Darst SA, Campbell EA. Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex. Cell 2020;182:1560-1573.e13. [PMID: 32783916 DOI: 10.1016/j.cell.2020.07.033] [Cited by in Crossref: 126] [Cited by in F6Publishing: 118] [Article Influence: 63.0] [Reference Citation Analysis]
138 [DOI: 10.1101/2020.08.10.244350] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
139 Aziz A, Asif M, Ashraf G, Farooq U, Yang Q, Wang S. Trends in biosensing platforms for SARS-CoV-2 detection: A critical appraisal against standard detection tools. Curr Opin Colloid Interface Sci 2021;52:101418. [PMID: 33495685 DOI: 10.1016/j.cocis.2021.101418] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 12.0] [Reference Citation Analysis]
140 Wang Y, Sun J, Zhu A, Zhao J, Zhao J. Current understanding of middle east respiratory syndrome coronavirus infection in human and animal models. J Thorac Dis 2018;10:S2260-71. [PMID: 30116605 DOI: 10.21037/jtd.2018.03.80] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
141 Wang Q, Zhang L, Kuwahara K, Li L, Liu Z, Li T, Zhu H, Liu J, Xu Y, Xie J, Morioka H, Sakaguchi N, Qin C, Liu G. Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates. ACS Infect Dis 2016;2:361-76. [PMID: 27627203 DOI: 10.1021/acsinfecdis.6b00006] [Cited by in Crossref: 212] [Cited by in F6Publishing: 176] [Article Influence: 35.3] [Reference Citation Analysis]
142 Zhang Z, Yao J, Huang X, Zhang L, Wang T, Weng Z, Xie G. Multiplex real-time PCR using double-strand primers and probes for the detection of nucleic acids. Anal Methods 2020;12:5392-6. [PMID: 33111715 DOI: 10.1039/d0ay01661f] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
143 Cheng KW, Cheng SC, Chen WY, Lin MH, Chuang SJ, Cheng IH, Sun CY, Chou CY. Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus. Antiviral Res. 2015;115:9-16. [PMID: 25542975 DOI: 10.1016/j.antiviral.2014.12.011] [Cited by in Crossref: 117] [Cited by in F6Publishing: 108] [Article Influence: 14.6] [Reference Citation Analysis]
144 Chen J, Malone B, Llewellyn E, Grasso M, Shelton PMM, Olinares PDB, Maruthi K, Eng E, Vatandaslar H, Chait BT, Kapoor T, Darst SA, Campbell EA. Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex. bioRxiv 2020:2020. [PMID: 32676607 DOI: 10.1101/2020.07.08.194084] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
145 Feng S, Luan X, Wang Y, Wang H, Zhang Z, Wang Y, Tian Z, Liu M, Xiao Y, Zhao Y, Zhou R, Zhang S. Eltrombopag is a potential target for drug intervention in SARS-CoV-2 spike protein. Infect Genet Evol 2020;85:104419. [PMID: 32540428 DOI: 10.1016/j.meegid.2020.104419] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
146 Duda-Chodak A, Lukasiewicz M, Zięć G, Florkiewicz A, Filipiak-Florkiewicz A. Covid-19 pandemic and food: Present knowledge, risks, consumers fears and safety. Trends Food Sci Technol 2020;105:145-60. [PMID: 32921922 DOI: 10.1016/j.tifs.2020.08.020] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
147 Cao C, He L, Tian Y, Qin Y, Sun H, Ding W, Gui L, Wu P. Molecular epidemiology analysis of early variants of SARS-CoV-2 reveals the potential impact of mutations P504L and Y541C (NSP13) in the clinical COVID-19 outcomes. Infect Genet Evol 2021;92:104831. [PMID: 33798758 DOI: 10.1016/j.meegid.2021.104831] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
148 Sajjad H, Majeed M, Imtiaz S, Siddiqah M, Sajjad A, Din M, Ali M. Origin, Pathogenesis, Diagnosis and Treatment Options for SARS-CoV-2: A Review. Biologia (Bratisl) 2021;:1-19. [PMID: 34092799 DOI: 10.1007/s11756-021-00792-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
149 Parhizkar Roudsari P, Alavi-Moghadam S, Payab M, Sayahpour FA, Aghayan HR, Goodarzi P, Mohamadi-Jahani F, Larijani B, Arjmand B. Auxiliary role of mesenchymal stem cells as regenerative medicine soldiers to attenuate inflammatory processes of severe acute respiratory infections caused by COVID-19. Cell Tissue Bank 2020;21:405-25. [PMID: 32588163 DOI: 10.1007/s10561-020-09842-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
150 Baharoon S, Memish ZA. MERS-CoV as an emerging respiratory illness: A review of prevention methods. Travel Med Infect Dis 2019;:101520. [PMID: 31730910 DOI: 10.1016/j.tmaid.2019.101520] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 9.7] [Reference Citation Analysis]
151 Moradi G, Piroozi B, Mohamadi-Bolbanabad A, Safari H, Shokri A, Rahimi R. Can judgments according to case fatality rate be correct all the time during epidemics? Estimated cases based on CFR in different scenarios and some lessons from early case fatality rate of coronavirus disease 2019 in Iran. Med J Islam Repub Iran 2020;34:26. [PMID: 32551315 DOI: 10.34171/mjiri.34.26] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
152 Sengupta S, Addya S, Biswas D, Banerjee P, Sarma JD. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in murine β-coronavirus-induced neuroinflammation. Virology 2022;566:122-35. [PMID: 34906793 DOI: 10.1016/j.virol.2021.11.012] [Reference Citation Analysis]
153 Jochheim FA, Tegunov D, Hillen HS, Schmitzová J, Kokic G, Dienemann C, Cramer P. The structure of a dimeric form of SARS-CoV-2 polymerase. Commun Biol 2021;4:999. [PMID: 34429502 DOI: 10.1038/s42003-021-02529-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
154 Liu WJ, Zhao M, Liu K, Xu K, Wong G, Tan W, Gao GF. T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV. Antiviral Res 2017;137:82-92. [PMID: 27840203 DOI: 10.1016/j.antiviral.2016.11.006] [Cited by in Crossref: 210] [Cited by in F6Publishing: 195] [Article Influence: 35.0] [Reference Citation Analysis]
155 Servidio C, Stellacci F. Therapeutic approaches against coronaviruses acute respiratory syndrome. Pharmacol Res Perspect 2021;9:e00691. [PMID: 33378565 DOI: 10.1002/prp2.691] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
156 Sethi A, Sanam S, Munagalasetty S, Jayanthi S, Alvala M. Understanding the role of galectin inhibitors as potential candidates for SARS-CoV-2 spike protein: in silico studies. RSC Adv 2020;10:29873-84. [DOI: 10.1039/d0ra04795c] [Cited by in Crossref: 10] [Article Influence: 5.0] [Reference Citation Analysis]
157 Kokic G, Hillen HS, Tegunov D, Dienemann C, Seitz F, Schmitzova J, Farnung L, Siewert A, Höbartner C, Cramer P. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat Commun 2021;12:279. [PMID: 33436624 DOI: 10.1038/s41467-020-20542-0] [Cited by in Crossref: 67] [Cited by in F6Publishing: 73] [Article Influence: 67.0] [Reference Citation Analysis]
158 Jakubiak GK, Ochab-jakubiak J, Cieślar G, Stanek A. Gastrointestinal symptoms in the course of COVID-19. Postepy Hig Med Dosw 2020;74:498-503. [DOI: 10.5604/01.3001.0014.5459] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
159 Farah S, Atkulwar A, Praharaj MR, Khan R, Gandham R, Baig M. Phylogenomics and phylodynamics of SARS-CoV-2 genomes retrieved from India. Future Virology 2020;15:747-53. [DOI: 10.2217/fvl-2020-0243] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
160 Manandhar A, Blass BE, Colussi DJ, Almi I, Abou-Gharbia M, Klein ML, Elokely KM. Targeting SARS-CoV-2 M3CLpro by HCV NS3/4a Inhibitors: In Silico Modeling and In Vitro Screening. J Chem Inf Model 2021;61:1020-32. [PMID: 33538596 DOI: 10.1021/acs.jcim.0c01457] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
161 Hu Y, Ma C, Szeto T, Hurst B, Tarbet B, Wang J. Boceprevir, calpain inhibitors II and XII, and GC-376 have broad-spectrum antiviral activity against coronaviruses in cell culture. bioRxiv 2020:2020. [PMID: 33140049 DOI: 10.1101/2020.10.30.362335] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
162 Lin MH, Moses DC, Hsieh CH, Cheng SC, Chen YH, Sun CY, Chou CY. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Res 2018;150:155-63. [PMID: 29289665 DOI: 10.1016/j.antiviral.2017.12.015] [Cited by in Crossref: 126] [Cited by in F6Publishing: 111] [Article Influence: 25.2] [Reference Citation Analysis]
163 Kumar V, Tan KP, Wang YM, Lin SW, Liang PH. Identification, synthesis and evaluation of SARS-CoV and MERS-CoV 3C-like protease inhibitors. Bioorg Med Chem 2016;24:3035-42. [PMID: 27240464 DOI: 10.1016/j.bmc.2016.05.013] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 8.3] [Reference Citation Analysis]
164 Boukhatem MN, Setzer WN. Aromatic Herbs, Medicinal Plant-Derived Essential Oils, and Phytochemical Extracts as Potential Therapies for Coronaviruses: Future Perspectives. Plants (Basel) 2020;9:E800. [PMID: 32604842 DOI: 10.3390/plants9060800] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
165 Chen HW, Huang CY, Lin SY, Fang ZS, Hsu CH, Lin JC, Chen YI, Yao BY, Hu CM. Synthetic virus-like particles prepared via protein corona formation enable effective vaccination in an avian model of coronavirus infection. Biomaterials 2016;106:111-8. [PMID: 27552321 DOI: 10.1016/j.biomaterials.2016.08.018] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 7.2] [Reference Citation Analysis]
166 Gupta A, Karyakarte R, Joshi S, Das R, Jani K, Shouche Y, Sharma A. Nasopharyngeal microbiome reveals the prevalence of opportunistic pathogens in SARS-CoV-2 infected individuals and their association with host types. Microbes Infect 2021;:104880. [PMID: 34425246 DOI: 10.1016/j.micinf.2021.104880] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
167 Lei J, Mesters JR, Drosten C, Anemüller S, Ma Q, Hilgenfeld R. Crystal structure of the papain-like protease of MERS coronavirus reveals unusual, potentially druggable active-site features. Antiviral Res 2014;109:72-82. [PMID: 24992731 DOI: 10.1016/j.antiviral.2014.06.011] [Cited by in Crossref: 57] [Cited by in F6Publishing: 55] [Article Influence: 7.1] [Reference Citation Analysis]
168 Ghayda RA, Lee J, Lee JY, Kim DK, Lee KH, Hong SH, Han YJ, Kim JS, Yang JW, Kronbichler A, Smith L, Koyanagi A, Jacob L, Shin JI. Correlations of Clinical and Laboratory Characteristics of COVID-19: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health 2020;17:E5026. [PMID: 32668763 DOI: 10.3390/ijerph17145026] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
169 Zhang L, Li L, Yan L, Ming Z, Jia Z, Lou Z, Rao Z. Structural and Biochemical Characterization of Endoribonuclease Nsp15 Encoded by Middle East Respiratory Syndrome Coronavirus. J Virol 2018;92:e00893-18. [PMID: 30135128 DOI: 10.1128/JVI.00893-18] [Cited by in Crossref: 51] [Cited by in F6Publishing: 34] [Article Influence: 12.8] [Reference Citation Analysis]
170 Dawson P, Malik MR, Parvez F, Morse SS. What Have We Learned About Middle East Respiratory Syndrome Coronavirus Emergence in Humans? A Systematic Literature Review. Vector Borne Zoonotic Dis. 2019;19:174-192. [PMID: 30676269 DOI: 10.1089/vbz.2017.2191] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 10.7] [Reference Citation Analysis]
171 Li X, Sun J, Prinz RA, Liu X, Xu X. Inhibition of porcine epidemic diarrhea virus (PEDV) replication by A77 1726 through targeting JAK and Src tyrosine kinases. Virology 2020;551:75-83. [PMID: 32829915 DOI: 10.1016/j.virol.2020.06.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
172 [DOI: 10.1101/2020.03.22.20040774] [Cited by in Crossref: 36] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
173 Rahman MM, Saha T, Islam KJ, Suman RH, Biswas S, Rahat EU, Hossen MR, Islam R, Hossain MN, Mamun AA, Khan M, Ali MA, Halim MA. Virtual screening, molecular dynamics and structure-activity relationship studies to identify potent approved drugs for Covid-19 treatment. J Biomol Struct Dyn 2020;:1-11. [PMID: 32692306 DOI: 10.1080/07391102.2020.1794974] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
174 Choi J, Hong SC, Kim W, Jung JH. Highly Enriched, Controllable, Continuous Aerosol Sampling Using Inertial Microfluidics and Its Application to Real-Time Detection of Airborne Bacteria. ACS Sens 2017;2:513-21. [PMID: 28723191 DOI: 10.1021/acssensors.6b00753] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
175 Rizwan M, Rönnberg B, Cistjakovs M, Lundkvist Å, Pipkorn R, Blomberg J. Serology in the Digital Age: Using Long Synthetic Peptides Created from Nucleic Acid Sequences as Antigens in Microarrays. Microarrays (Basel) 2016;5:E22. [PMID: 27600087 DOI: 10.3390/microarrays5030022] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
176 Shahrajabian MH, Sun W, Cheng Q. Product of natural evolution (SARS, MERS, and SARS-CoV-2); deadly diseases, from SARS to SARS-CoV-2. Hum Vaccin Immunother 2021;17:62-83. [PMID: 32783700 DOI: 10.1080/21645515.2020.1797369] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
177 Westerbeck JW, Machamer CE. A Coronavirus E Protein Is Present in Two Distinct Pools with Different Effects on Assembly and the Secretory Pathway. J Virol 2015;89:9313-23. [PMID: 26136577 DOI: 10.1128/JVI.01237-15] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 5.6] [Reference Citation Analysis]
178 Cho YS, Kim HR, Ko HS, Jeong SB, Chan Kim B, Jung JH. Continuous Surveillance of Bioaerosols On-Site Using an Automated Bioaerosol-Monitoring System. ACS Sens 2020;5:395-403. [PMID: 31913022 DOI: 10.1021/acssensors.9b02001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
179 Zhao X, Ding Y, Du J, Fan Y. 2020 update on human coronaviruses: One health, one world. Med Nov Technol Devices 2020;8:100043. [PMID: 33521622 DOI: 10.1016/j.medntd.2020.100043] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
180 de Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, van Nieuwkoop S, Bestebroer TM, van den Hoogen BG, Neyts J, Snijder EJ. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother. 2014;58:4875-4884. [PMID: 24841269 DOI: 10.1128/aac.03011-14] [Cited by in Crossref: 442] [Cited by in F6Publishing: 313] [Article Influence: 55.3] [Reference Citation Analysis]
181 Popkin BM, Du S, Green WD, Beck MA, Algaith T, Herbst CH, Alsukait RF, Alluhidan M, Alazemi N, Shekar M. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes Rev. 2020;21:e13128. [PMID: 32845580 DOI: 10.1111/obr.13128] [Cited by in Crossref: 229] [Cited by in F6Publishing: 235] [Article Influence: 114.5] [Reference Citation Analysis]
182 Kopańska M, Barnaś E, Błajda J, Kuduk B, Łagowska A, Banaś-ząbczyk A. Effects of SARS-CoV-2 Inflammation on Selected Organ Systems of the Human Body. IJMS 2022;23:4178. [DOI: 10.3390/ijms23084178] [Reference Citation Analysis]
183 Lindahl JF, Hoffman T, Esmaeilzadeh M, Olsen B, Winter R, Amer S, Molnár C, Svalberg A, Lundkvist Å. High seroprevalence of SARS-CoV-2 in elderly care employees in Sweden. Infect Ecol Epidemiol 2020;10:1789036. [PMID: 32939231 DOI: 10.1080/20008686.2020.1789036] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
184 Kim E, Weisel FJ, Balmert SC, Khan MS, Huang S, Erdos G, Kenniston TW, Carey CD, Joachim SM, Conter LJ, Weisel NM, Okba NMA, Haagmans BL, Percivalle E, Cassaniti I, Baldanti F, Korkmaz E, Shlomchik MJ, Falo LD Jr, Gambotto A. A single subcutaneous or intranasal immunization with adenovirus-based SARS-CoV-2 vaccine induces robust humoral and cellular immune responses in mice. Eur J Immunol 2021;51:1774-84. [PMID: 33772778 DOI: 10.1002/eji.202149167] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
185 Hillen HS, Kokic G, Farnung L, Dienemann C, Tegunov D, Cramer P. Structure of replicating SARS-CoV-2 polymerase. Nature 2020;584:154-6. [PMID: 32438371 DOI: 10.1038/s41586-020-2368-8] [Cited by in Crossref: 221] [Cited by in F6Publishing: 222] [Article Influence: 110.5] [Reference Citation Analysis]
186 Hillen HS. Structure and function of SARS-CoV-2 polymerase. Curr Opin Virol 2021;48:82-90. [PMID: 33945951 DOI: 10.1016/j.coviro.2021.03.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
187 van Doremalen N, Munster VJ. Animal models of Middle East respiratory syndrome coronavirus infection. Antiviral Res 2015;122:28-38. [PMID: 26192750 DOI: 10.1016/j.antiviral.2015.07.005] [Cited by in Crossref: 53] [Cited by in F6Publishing: 49] [Article Influence: 7.6] [Reference Citation Analysis]
188 de Sales Lima FE, Cibulski SP, Witt AA, Franco AC, Roehe PM. Genomic characterization of two novel polyomaviruses in Brazilian insectivorous bats. Arch Virol 2015;160:1831-6. [PMID: 25963124 DOI: 10.1007/s00705-015-2447-6] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
189 Pundir H, Joshi T, Pant M, Bhat S, Pandey J, Chandra S, Tamta S. Identification of SARS-CoV-2 RNA dependent RNA polymerase inhibitors using pharmacophore modelling, molecular docking and molecular dynamics simulation approaches. J Biomol Struct Dyn 2021;:1-12. [PMID: 34637693 DOI: 10.1080/07391102.2021.1987329] [Reference Citation Analysis]
190 Jukič M, Kores K, Janežič D, Bren U. Repurposing of Drugs for SARS-CoV-2 Using Inverse Docking Fingerprints. Front Chem 2021;9:757826. [PMID: 35028304 DOI: 10.3389/fchem.2021.757826] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]