BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li C, McCall NM, Lopez AJ, Kash TL. Alcohol effects on synaptic transmission in periaqueductal gray dopamine neurons. Alcohol 2013;47:279-87. [PMID: 23597415 DOI: 10.1016/j.alcohol.2013.02.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
Number Citing Articles
1 Robinson SL, Dornellas APS, Burnham NW, Houck CA, Luhn KL, Bendrath SC, Companion MA, Brewton HW, Thomas RD, Navarro M, Thiele TE. Distinct and Overlapping Patterns of Acute Ethanol-Induced C-Fos Activation in Two Inbred Replicate Lines of Mice Selected for Drinking to High Blood Ethanol Concentrations. Brain Sci 2020;10:E988. [PMID: 33333877 DOI: 10.3390/brainsci10120988] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
2 Graham DL, Durai HH, Trammell TS, Noble BL, Mortlock DP, Galli A, Stanwood GD. A novel mouse model of glucagon-like peptide-1 receptor expression: A look at the brain. J Comp Neurol 2020;528:2445-70. [PMID: 32170734 DOI: 10.1002/cne.24905] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
3 Lin R, Liang J, Luo M. The Raphe Dopamine System: Roles in Salience Encoding, Memory Expression, and Addiction. Trends Neurosci 2021;44:366-77. [PMID: 33568331 DOI: 10.1016/j.tins.2021.01.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Walters CJ, Jubran J, Sheehan A, Erickson MT, Redish AD. Avoid-approach conflict behaviors differentially affected by anxiolytics: implications for a computational model of risky decision-making. Psychopharmacology (Berl) 2019;236:2513-25. [PMID: 30863879 DOI: 10.1007/s00213-019-05197-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
5 Yu W, Pati D, Pina MM, Schmidt KT, Boyt KM, Hunker AC, Zweifel LS, McElligott ZA, Kash TL. Periaqueductal gray/dorsal raphe dopamine neurons contribute to sex differences in pain-related behaviors. Neuron 2021;109:1365-1380.e5. [PMID: 33740416 DOI: 10.1016/j.neuron.2021.03.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
6 McClintick JN, McBride WJ, Bell RL, Ding ZM, Liu Y, Xuei X, Edenberg HJ. Gene Expression Changes in Glutamate and GABA-A Receptors, Neuropeptides, Ion Channels, and Cholesterol Synthesis in the Periaqueductal Gray Following Binge-Like Alcohol Drinking by Adolescent Alcohol-Preferring (P) Rats. Alcohol Clin Exp Res 2016;40:955-68. [PMID: 27061086 DOI: 10.1111/acer.13056] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
7 Li C, Sugam JA, Lowery-Gionta EG, McElligott ZA, McCall NM, Lopez AJ, McKlveen JM, Pleil KE, Kash TL. Mu Opioid Receptor Modulation of Dopamine Neurons in the Periaqueductal Gray/Dorsal Raphe: A Role in Regulation of Pain. Neuropsychopharmacology 2016;41:2122-32. [PMID: 26792442 DOI: 10.1038/npp.2016.12] [Cited by in Crossref: 62] [Cited by in F6Publishing: 60] [Article Influence: 10.3] [Reference Citation Analysis]
8 Pina MM, Pati D, Hwa LS, Wu SY, Mahoney AA, Omenyi CG, Navarro M, Kash TL. The kappa opioid receptor modulates GABA neuron excitability and synaptic transmission in midbrainprojections from the insular cortex. Neuropharmacology 2020;165:107831. [PMID: 31870854 DOI: 10.1016/j.neuropharm.2019.107831] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Dougalis AG, Matthews GAC, Liss B, Ungless MA. Ionic currents influencing spontaneous firing and pacemaker frequency in dopamine neurons of the ventrolateral periaqueductal gray and dorsal raphe nucleus (vlPAG/DRN): A voltage-clamp and computational modelling study. J Comput Neurosci 2017;42:275-305. [PMID: 28367595 DOI: 10.1007/s10827-017-0641-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
10 Le TM, Zhornitsky S, Zhang S, Li CR. Pain and reward circuits antagonistically modulate alcohol expectancy to regulate drinking. Transl Psychiatry 2020;10:220. [PMID: 32636394 DOI: 10.1038/s41398-020-00909-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
11 Gilpin NW, Yu W, Kash TL. Forebrain-Midbrain Circuits and Peptides Involved in Hyperalgesia After Chronic Alcohol Exposure. Alcohol Res 2021;41:13. [PMID: 34729286 DOI: 10.35946/arcr.v41.1.13] [Reference Citation Analysis]
12 Lovinger DM. Presynaptic Ethanol Actions: Potential Roles in Ethanol Seeking. Handb Exp Pharmacol 2018;248:29-54. [PMID: 29204712 DOI: 10.1007/164_2017_76] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
13 Lowery-gionta EG, Kash TL. The Bed Nucleus of the Stria Terminalis: A Critical Site of Ethanol-Induced Alterations in Neurotransmission. Neurobiology of Alcohol Dependence. Elsevier; 2014. pp. 83-96. [DOI: 10.1016/b978-0-12-405941-2.00005-5] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
14 Bordia T, Zahr NM. The Inferior Colliculus in Alcoholism and Beyond. Front Syst Neurosci 2020;14:606345. [PMID: 33362482 DOI: 10.3389/fnsys.2020.606345] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Kimbrough A, Lurie DJ, Collazo A, Kreifeldt M, Sidhu H, Macedo GC, D'Esposito M, Contet C, George O. Brain-wide functional architecture remodeling by alcohol dependence and abstinence. Proc Natl Acad Sci U S A 2020;117:2149-59. [PMID: 31937658 DOI: 10.1073/pnas.1909915117] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
16 Williams MA, Li C, Kash TL, Matthews RT, Winder DG. Excitatory drive onto dopaminergic neurons in the rostral linear nucleus is enhanced by norepinephrine in an α1 adrenergic receptor-dependent manner. Neuropharmacology 2014;86:116-24. [PMID: 25018040 DOI: 10.1016/j.neuropharm.2014.07.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
17 Hood LE, Leyrer-Jackson JM, Olive MF. Pharmacotherapeutic management of co-morbid alcohol and opioid use. Expert Opin Pharmacother 2020;21:823-39. [PMID: 32103695 DOI: 10.1080/14656566.2020.1732349] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
18 Zahr NM. Structural and microstructral imaging of the brain in alcohol use disorders. Handb Clin Neurol 2014;125:275-90. [PMID: 25307581 DOI: 10.1016/B978-0-444-62619-6.00017-3] [Cited by in Crossref: 28] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
19 Vázquez-León P, Miranda-Páez A, Chávez-Reyes J, Allende G, Barragán-Iglesias P, Marichal-Cancino BA. The Periaqueductal Gray and Its Extended Participation in Drug Addiction Phenomena. Neurosci Bull 2021. [PMID: 34302618 DOI: 10.1007/s12264-021-00756-y] [Reference Citation Analysis]
20 An S, Zhao YF, Lü XY, Wang ZG. Quantitative evaluation of extrinsic factors influencing electrical excitability in neuronal networks: Voltage Threshold Measurement Method (VTMM). Neural Regen Res 2018;13:1026-35. [PMID: 29926830 DOI: 10.4103/1673-5374.233446] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]