BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Janjua TI, Rewatkar P, Ahmed-Cox A, Saeed I, Mansfeld FM, Kulshreshtha R, Kumeria T, Ziegler DS, Kavallaris M, Mazzieri R, Popat A. Frontiers in the treatment of glioblastoma: Past, present and emerging. Adv Drug Deliv Rev 2021;171:108-38. [PMID: 33486006 DOI: 10.1016/j.addr.2021.01.012] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 23.5] [Reference Citation Analysis]
Number Citing Articles
1 Yi G, Liu H, Sun F, Du R, Kong J, Wang H, Cheng H, Wang G, Gao F, Liang P. Intratumor injection of thermosensitive polypeptide with resveratrol inhibits glioblastoma growth. Tissue Eng Part C Methods 2023. [PMID: 36719787 DOI: 10.1089/ten.TEC.2022.0207] [Reference Citation Analysis]
2 Durand M, Chateau A, Jubréaux J, Devy J, Paquot H, Laurent G, Bazzi R, Roux S, Richet N, Reinhard-Ruch A, Chastagner P, Pinel S. Radiosensitization with Gadolinium Chelate-Coated Gold Nanoparticles Prevents Aggressiveness and Invasiveness in Glioblastoma. Int J Nanomedicine 2023;18:243-61. [PMID: 36660336 DOI: 10.2147/IJN.S375918] [Reference Citation Analysis]
3 Allami P, Heidari A, Rezaei N. The role of cell membrane-coated nanoparticles as a novel treatment approach in glioblastoma. Front Mol Biosci 2022;9:1083645. [PMID: 36660431 DOI: 10.3389/fmolb.2022.1083645] [Reference Citation Analysis]
4 Liu D, Dai X, Ye L, Wang H, Qian H, Cheng H, Wang X. Nanotechnology meets glioblastoma multiforme: Emerging therapeutic strategies. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023;15:e1838. [PMID: 35959642 DOI: 10.1002/wnan.1838] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Miranda J, Vázquez-blomquist D, Bringas R, Fernandez-de-cossio J, Palenzuela D, Novoa LI, Bello-rivero I. A co-formulation of Interferons alpha2b and gamma distinctively targets Cell Cycle in the glioblastoma-derived cell line U-87MG.. [DOI: 10.21203/rs.3.rs-2369826/v1] [Reference Citation Analysis]
6 Visintin R, Ray SK. Intersections of Ubiquitin-Proteosome System and Autophagy in Promoting Growth of Glioblastoma Multiforme: Challenges and Opportunities. Cells 2022;11. [PMID: 36552827 DOI: 10.3390/cells11244063] [Reference Citation Analysis]
7 Song J, Zheng J, Liu X, Dong W, Yang C, Wang D, Ruan X, Zhao Y, Liu L, Wang P, Zhang M, Liu Y. A novel protein encoded by ZCRB1-induced circHEATR5B suppresses aerobic glycolysis of GBM through phosphorylation of JMJD5. J Exp Clin Cancer Res 2022;41:171. [DOI: 10.1186/s13046-022-02374-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Gholibegloo E, Ebrahimpour A, Mortezazadeh T, Sorouri F, Foroumadi A, Firoozpour L, Shafiee Ardestani M, Khoobi M. pH-Responsive chitosan-modified gadolinium oxide nanoparticles delivering 5-aminolevulinic acid: A dual cellular and metabolic T1-T2* contrast agent for glioblastoma brain tumors detection. Journal of Molecular Liquids 2022;368:120628. [DOI: 10.1016/j.molliq.2022.120628] [Reference Citation Analysis]
9 Ershadi MM, Rise ZR, Niaki STA. A hierarchical machine learning model based on Glioblastoma patients' clinical, biomedical, and image data to analyze their treatment plans. Computers in Biology and Medicine 2022;150:106159. [DOI: 10.1016/j.compbiomed.2022.106159] [Reference Citation Analysis]
10 Yang K, Ma Y, Chen G, Zeng S, Guo T, Yang Z. Comparative analysis of the prognosis of external beam radiation therapy (EBRT) and EBRT plus brachytherapy for glioblastoma multiforme: a SEER population-based study. Radiat Oncol 2022;17:174. [PMID: 36307810 DOI: 10.1186/s13014-022-02141-z] [Reference Citation Analysis]
11 Ghaferi M, Raza A, Koohi M, Zahra W, Akbarzadeh A, Ebrahimi Shahmabadi H, Alavi SE. Impact of PEGylated Liposomal Doxorubicin and Carboplatin Combination on Glioblastoma. Pharmaceutics 2022;14:2183. [DOI: 10.3390/pharmaceutics14102183] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Wu J, Ma T, Zhu M, Huang T, Zhang B, Gao J, Lin N. Nanotechnology reinforced neutrophil-based therapeutic strategies for inflammatory diseases therapy. Nano Today 2022;46:101577. [DOI: 10.1016/j.nantod.2022.101577] [Reference Citation Analysis]
13 Miranda J, Vázquez-blomquist D, Bringas R, Fernández-de-cossio J, Palenzuela D, Novoa LI, Bello-rivero I. HeberFERON distinctively targets Cell Cycle in the glioblastoma-derived cell line U-87MG.. [DOI: 10.1101/2022.09.22.508971] [Reference Citation Analysis]
14 Hong H, Lu X, Lu Q, Huang C, Cui Z. Potential therapeutic effects and pharmacological evidence of sinomenine in central nervous system disorders. Front Pharmacol 2022;13:1015035. [DOI: 10.3389/fphar.2022.1015035] [Reference Citation Analysis]
15 Li M, Xu H, Qi Y, Pan Z, Li B, Gao Z, Zhao R, Xue H, Li G. Tumor-derived exosomes deliver the tumor suppressor miR-3591-3p to induce M2 macrophage polarization and promote glioma progression. Oncogene 2022. [PMID: 36085418 DOI: 10.1038/s41388-022-02457-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Guo X, Sui R, Piao H. Tumor-derived small extracellular vesicles: potential roles and mechanism in glioma. J Nanobiotechnology 2022;20:383. [PMID: 35999601 DOI: 10.1186/s12951-022-01584-6] [Reference Citation Analysis]
17 Huang Q, Chen L, Liang J, Huang Q, Sun H. Neurotransmitters: Potential Targets in Glioblastoma. Cancers 2022;14:3970. [DOI: 10.3390/cancers14163970] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Hong H, Lu X, Wu C, Chen J, Chen C, Zhang J, Huang C, Cui Z. A review for the pharmacological effects of paeoniflorin in the nervous system. Front Pharmacol 2022;13:898955. [DOI: 10.3389/fphar.2022.898955] [Reference Citation Analysis]
19 Barzegar Behrooz A, Talaie Z, Syahir A. Nanotechnology-Based Combinatorial Anti-Glioblastoma Therapies: Moving from Terminal to Treatable. Pharmaceutics 2022;14:1697. [DOI: 10.3390/pharmaceutics14081697] [Reference Citation Analysis]
20 Kou Y, Geng F, Guo D. Lipid Metabolism in Glioblastoma: From De Novo Synthesis to Storage. Biomedicines 2022;10:1943. [DOI: 10.3390/biomedicines10081943] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Chen C, Jing W, Chen Y, Wang G, Abdalla M, Gao L, Han M, Shi C, Li A, Sun P, Jiang X, Yang Z, Zhang S, Zhang J, Tang C, Liu Y, Zhang R, Xu F, Dong B, Li X, Liu M, Qiang B, Sun Y, Wei X, Li J, Hu Q, Jiang X. Intracavity generation of glioma stem cell-specific CAR macrophages primes locoregional immunity for postoperative glioblastoma therapy. Sci Transl Med 2022;14:eabn1128. [PMID: 35921473 DOI: 10.1126/scitranslmed.abn1128] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
22 Liu D, Chen J, Ge H, Yan Z, Luo B, Hu X, Yang K, Liu Y, Liu H, Zhang W. Radiogenomics to characterize the immune-related prognostic signature associated with biological functions in glioblastoma. Eur Radiol 2022. [PMID: 35881182 DOI: 10.1007/s00330-022-09012-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Meng M, Zhou H, He Y, Chen L, Wang W, Yang L, Wang Z, Zhang L, Wang S. CDH6 as a prognostic indicator and marker for chemotherapy in gliomas. Front Genet 2022;13:949552. [DOI: 10.3389/fgene.2022.949552] [Reference Citation Analysis]
24 Wang P, Wang T, Dong L, Xu Z, Guo S, Chang C. Circular RNA circ_0079593 facilitates glioma development via modulating miR-324-5p/XBP1 axis. Metab Brain Dis. [DOI: 10.1007/s11011-022-01040-2] [Reference Citation Analysis]
25 Poot E, Maguregui A, Brunton VG, Sieger D, Hulme AN. Targeting Glioblastoma through Nano- and Micro-particle-Mediated Immune Modulation. Bioorganic & Medicinal Chemistry 2022. [DOI: 10.1016/j.bmc.2022.116913] [Reference Citation Analysis]
26 Xu S, Sheng Z, Yu J, Deng K, Wu S, Bu Y, Guo G, Zhang Z, Liu G, Gao Y, Yan Z, Bu C, He Y, Liu G, Zemmar A, Hernesniemi J, Kong L, Wang M, Li T, Bu X. Real-time longitudinal analysis of human gliomas reveals in vivo genome evolution and therapeutic impact under standardized treatment. Clin Transl Med 2022;12:e956. [PMID: 35802830 DOI: 10.1002/ctm2.956] [Reference Citation Analysis]
27 Cruz JVR, Batista C, Afonso BDH, Alexandre-moreira MS, Dubois LG, Pontes B, Moura Neto V, Mendes FDA. Obstacles to Glioblastoma Treatment Two Decades after Temozolomide. Cancers 2022;14:3203. [DOI: 10.3390/cancers14133203] [Reference Citation Analysis]
28 Wang S, Wang Y, Xiong J, Bao W, Li Y, Qin J, Han G, Hu S, Lei J, Yang Z, Qian Y, Dong S, Dong Z. Novel Brain-Stiffness-Mimicking Matrix Gel Enables Comprehensive Invasion Analysis of 3D Cultured GBM Cells. Front Mol Biosci 2022;9:885806. [PMID: 35755807 DOI: 10.3389/fmolb.2022.885806] [Reference Citation Analysis]
29 Zhang S, Xiao X, Wang Y, Song T, Li C, Bao H, Liu Q, Sun G, Sun X, Su T, Fu T, Wang Y, Liang P. Developing an Immune-Related Signature for Predicting Survival Rate and the Response to Immune Checkpoint Inhibitors in Patients With Glioma. Front Genet 2022;13:899125. [DOI: 10.3389/fgene.2022.899125] [Reference Citation Analysis]
30 Liang R, Wu C, Liu S, Zhao W. Targeting interleukin-13 receptor α2 (IL-13Rα2) for glioblastoma therapy with surface functionalized nanocarriers. Drug Deliv 2022;29:1620-30. [PMID: 35612318 DOI: 10.1080/10717544.2022.2075986] [Reference Citation Analysis]
31 Rustad EAL, von Hofsten S, Kumar R, Lænsman EA, Berge G, Škalko-basnet N. The pH-Responsive Liposomes—The Effect of PEGylation on Release Kinetics and Cellular Uptake in Glioblastoma Cells. Pharmaceutics 2022;14:1125. [DOI: 10.3390/pharmaceutics14061125] [Reference Citation Analysis]
32 Du Y, Li X, Yang P, A. Newman R. A Role for Cardiac Glycosides in GBM Therapy. Glioblastoma - Current Evidences [Working Title] 2022. [DOI: 10.5772/intechopen.105022] [Reference Citation Analysis]
33 Afonso M, Brito MA. Therapeutic Options in Neuro-Oncology. Int J Mol Sci 2022;23:5351. [PMID: 35628161 DOI: 10.3390/ijms23105351] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Gao W, Li Y, Zhang T, Lu J, Pan J, Qi Q, Dong S, Chen X, Su Z, Li J. Systematic Analysis of Chemokines Reveals CCL18 is a Prognostic Biomarker in Glioblastoma. J Inflamm Res 2022;15:2731-43. [PMID: 35509325 DOI: 10.2147/JIR.S357787] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Dong L, Li N, Wei X, Wang Y, Chang L, Wu H, Song L, Guo K, Chang Y, Yin Y, Pan M, Shen Y, Wang F. A Gambogic Acid-Loaded Delivery System Mediated by Ultrasound-Targeted Microbubble Destruction: A Promising Therapy Method for Malignant Cerebral Glioma. IJN 2022;Volume 17:2001-17. [DOI: 10.2147/ijn.s344940] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Li Z, Ma Y, Zhou Y, Huang Z, Frauscher F. Expression Profiles of HOXC6 Predict the Survival of Glioblastoma Patients and Correlate with Cell Cycle. Journal of Oncology 2022;2022:1-17. [DOI: 10.1155/2022/8656865] [Reference Citation Analysis]
37 Mathew EN, Berry BC, Yang HW, Carroll RS, Johnson MD. Delivering Therapeutics to Glioblastoma: Overcoming Biological Constraints. Int J Mol Sci 2022;23:1711. [PMID: 35163633 DOI: 10.3390/ijms23031711] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
38 Amouheidari A, Alirezaei Z, Rauh S, Hassanpour M, Kanat O. PrACTiC: A Predictive Algorithm for Chemoradiotherapy-Induced Cytopenia in Glioblastoma Patients. Journal of Oncology 2022;2022:1-7. [DOI: 10.1155/2022/1438190] [Reference Citation Analysis]
39 Fuentes-Fayos AC, G-García ME, Pérez-Gómez JM, Peel A, Blanco-Acevedo C, Solivera J, Ibáñez-Costa A, Gahete MD, Castaño JP, Luque RM. Somatostatin Receptor Splicing Variant sst5TMD4 Overexpression in Glioblastoma Is Associated with Poor Survival, Increased Aggressiveness Features, and Somatostatin Analogs Resistance. Int J Mol Sci 2022;23:1143. [PMID: 35163067 DOI: 10.3390/ijms23031143] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
40 Zhang M, Zhou Z, Liu Z, Liu F, Zhao C. Exploring the potential biomarkers for prognosis of glioblastoma via weighted gene co-expression network analysis. PeerJ 2022;10:e12768. [PMID: 35111402 DOI: 10.7717/peerj.12768] [Reference Citation Analysis]
41 Brandes B, Orlamünde TE, Hoenke S, Denner TC, Al-harrasi A, Csuk R. Selective and low-cost triterpene urea and amide derivatives of high cytotoxicity and selectivity. Results in Chemistry 2022;4:100610. [DOI: 10.1016/j.rechem.2022.100610] [Reference Citation Analysis]
42 Luo M, Liu Y, Zhang H, Luo C, Liu Q, Wang W, He Z, Chen C, Zhang X, Mao M, Yang K, Wang C, Chen X, Fu W, Niu Q, Bian X, Shi Y, Ping Y. Overexpression of carnitine palmitoyltransferase 1A promotes mitochondrial fusion and differentiation of glioblastoma stem cells. Lab Invest. [DOI: 10.1038/s41374-021-00724-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
43 Li T, Xu J, Liu Y. A Novel Circular RNA CircRFX3 Serves as a Sponge for MicroRNA-587 in Promoting Glioblastoma Progression via Regulating PDIA3. Front Cell Dev Biol 2021;9:757260. [PMID: 34950658 DOI: 10.3389/fcell.2021.757260] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
44 Wu J, Liang F, Wei R, Lai S, Lv X, Luo S, Wu Z, Chen H, Zhang W, Zeng X, Ye X, Wu Y, Wei X, Jiang X, Zhen X, Yang R. A Multiparametric MR-Based RadioFusionOmics Model with Robust Capabilities of Differentiating Glioblastoma Multiforme from Solitary Brain Metastasis. Cancers (Basel) 2021;13:5793. [PMID: 34830943 DOI: 10.3390/cancers13225793] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
45 Pan C, Zhai Y, Li G, Jiang T, Zhang W. NK Cell-Based Immunotherapy and Therapeutic Perspective in Gliomas. Front Oncol 2021;11:751183. [PMID: 34765554 DOI: 10.3389/fonc.2021.751183] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
46 Janjua TI, Ahmed-Cox A, Meka AK, Mansfeld FM, Forgham H, Ignacio RMC, Cao Y, McCarroll JA, Mazzieri R, Kavallaris M, Popat A. Facile synthesis of lactoferrin conjugated ultra small large pore silica nanoparticles for the treatment of glioblastoma. Nanoscale 2021;13:16909-22. [PMID: 34533167 DOI: 10.1039/d1nr03553c] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
47 Zhang Y, Xi K, Fu X, Sun H, Wang H, Yu D, Li Z, Ma Y, Liu X, Huang B, Wang J, Li G, Cui J, Li X, Ni S. Versatile metal-phenolic network nanoparticles for multitargeted combination therapy and magnetic resonance tracing in glioblastoma. Biomaterials 2021;278:121163. [PMID: 34601197 DOI: 10.1016/j.biomaterials.2021.121163] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
48 Wang X, Chen L, Ge J, Afshari MJ, Yang L, Miao Q, Duan R, Cui J, Liu C, Zeng J, Zhong J, Gao M. Rational Constructed Ultra-Small Iron Oxide Nanoprobes Manifesting High Performance for T1-Weighted Magnetic Resonance Imaging of Glioblastoma. Nanomaterials (Basel) 2021;11:2601. [PMID: 34685042 DOI: 10.3390/nano11102601] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
49 Bastiancich C, Malfanti A, Préat V, Rahman R. Rationally designed drug delivery systems for the local treatment of resected glioblastoma. Adv Drug Deliv Rev 2021;177:113951. [PMID: 34461201 DOI: 10.1016/j.addr.2021.113951] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
50 Yadav G, Kulshreshtha R. Metastasis associated long noncoding RNAs in glioblastoma: Biomarkers and therapeutic targets. J Cell Physiol 2021. [PMID: 34533835 DOI: 10.1002/jcp.30577] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Hutóczki G, Virga J, Birkó Z, Klekner A. Novel Concepts of Glioblastoma Therapy Concerning Its Heterogeneity. Int J Mol Sci 2021;22:10005. [PMID: 34576168 DOI: 10.3390/ijms221810005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
52 Lundy DJ, Nguyễn H, Hsieh PCH. Emerging Nano-Carrier Strategies for Brain Tumor Drug Delivery and Considerations for Clinical Translation. Pharmaceutics 2021;13:1193. [PMID: 34452156 DOI: 10.3390/pharmaceutics13081193] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
53 Kaur J, Jakhmola S, Singh RR, Joshi B, Jha HC, Joshi A. Ultrasonic Atomizer-Driven Development of Biocompatible and Biodegradable Poly(d,l-lactide-co-glycolide) Nanocarrier-Encapsulated Suberoylanilide Hydroxamic Acid to Combat Brain Cancer. ACS Appl Bio Mater 2021;4:5627-37. [PMID: 35006730 DOI: 10.1021/acsabm.1c00430] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
54 Sharma S, Masud MK, Kaneti YV, Rewatkar P, Koradia A, Hossain MSA, Yamauchi Y, Popat A, Salomon C. Extracellular Vesicle Nanoarchitectonics for Novel Drug Delivery Applications. Small 2021;:e2102220. [PMID: 34216426 DOI: 10.1002/smll.202102220] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
55 Riva M, Bevers S, Wouters R, Thirion G, Vandenbrande K, Vankerckhoven A, Berckmans Y, Verbeeck J, De Keersmaecker K, Coosemans A. Towards more accurate preclinical glioblastoma modelling: reverse translation of clinical standard of care in a glioblastoma mouse model.. [DOI: 10.1101/2021.06.17.448792] [Reference Citation Analysis]
56 Alves A, Costa P, Pinto M, Ferreira D, Correia-da-Silva M. Small Molecules of Marine Origin as Potential Anti-Glioma Agents. Molecules 2021;26:2707. [PMID: 34063013 DOI: 10.3390/molecules26092707] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]