BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev 2017;114:206-21. [PMID: 28449873 DOI: 10.1016/j.addr.2017.04.010] [Cited by in Crossref: 291] [Cited by in F6Publishing: 322] [Article Influence: 48.5] [Reference Citation Analysis]
Number Citing Articles
1 Liang C, Xiong N, Liu M, Chen Y, Li W, Xu J, Sun Y, Wang Y, Dong Y, Fan W, Zhang Y, Zhang Z. Manganese immunotherapy for treating osteosarcoma: Glycosylating 1V209 anchored MnO2 nanosheets prompt pro-inflammatory macrophage polarization. Nano Today 2023;48:101670. [DOI: 10.1016/j.nantod.2022.101670] [Reference Citation Analysis]
2 Song Y, Gao N, Yang Z, Zhang S, Fan T, Zhang B. Comprehensive Molecular Analyses of Notch Pathway-Related Genes to Predict Prognosis and Immunotherapy Response in Patients with Gastric Cancer. Journal of Oncology 2023;2023:1-15. [DOI: 10.1155/2023/2205083] [Reference Citation Analysis]
3 Wei K, Zhang H, Yang S, Cui Y, Zhang B, Liu J, Tang L, Tan Y, Liu S, Chen S, Yuan W, Luo X, Chen C, Li F, Liu J, Chen J, Xu P, Lv J, Tang K, Zhang Y, Ma J, Huang B. Chemo-drugs in cell microparticles reset antitumor activity of macrophages by activating lysosomal P450 and nuclear hnRNPA2B1. Signal Transduct Target Ther 2023;8:22. [PMID: 36658134 DOI: 10.1038/s41392-022-01212-7] [Reference Citation Analysis]
4 Shang CY, Wu JZ, Ren YM, Liang JH, Yin H, Xia Y, Wang L, Li JY, Li Y, Xu W. Prognostic significance of absolute monocyte count and lymphocyte to monocyte ratio in mucosa-associated lymphoid tissue (MALT) lymphoma. Ann Hematol 2023. [PMID: 36624225 DOI: 10.1007/s00277-023-05098-5] [Reference Citation Analysis]
5 Wang X, Li X, Liu D, Tang Z. Correlation between prognostic indicator FGFR1 and immune infiltrates in non‑small cell lung cancer.. [DOI: 10.21203/rs.3.rs-2421144/v1] [Reference Citation Analysis]
6 Li H, Luo Q, Zhang H, Ma X, Gu Z, Gong Q, Luo K. Nanomedicine embraces cancer radio-immunotherapy: mechanism, design, recent advances, and clinical translation. Chem Soc Rev 2023;52:47-96. [PMID: 36427082 DOI: 10.1039/d2cs00437b] [Reference Citation Analysis]
7 Liao C, Liu X, Zhang C, Zhang Q. Tumor hypoxia: From basic knowledge to therapeutic implications. Semin Cancer Biol 2023;88:172-86. [PMID: 36603793 DOI: 10.1016/j.semcancer.2022.12.011] [Reference Citation Analysis]
8 Li Y, Li H, He Q, Yang X. Potential of Compounds Originating from the Nature to Act in Hepatocellular Carcinoma Therapy by Targeting the Tumor Immunosuppressive Microenvironment: A Review. Molecules 2022;28. [PMID: 36615387 DOI: 10.3390/molecules28010195] [Reference Citation Analysis]
9 Chen X, Feng L, Huang Y, Wu Y, Xie N. Mechanisms and Strategies to Overcome PD-1/PD-L1 Blockade Resistance in Triple-Negative Breast Cancer. Cancers (Basel) 2022;15. [PMID: 36612100 DOI: 10.3390/cancers15010104] [Reference Citation Analysis]
10 Wang R, Shen J, Chen Y, Gao J, Yao J. Fatty acid metabolism-related signature predicts survival in patients with clear cell renal carcinoma. Aging (Albany NY) 2022;14:9969-79. [PMID: 36516496 DOI: 10.18632/aging.204433] [Reference Citation Analysis]
11 Mahdavi Firouzabadi B, Gigliobianco MR, Joseph JM, Censi R, Di Martino P. Design of Nanoparticles in Cancer Therapy Based on Tumor Microenvironment Properties. Pharmaceutics 2022;14. [PMID: 36559202 DOI: 10.3390/pharmaceutics14122708] [Reference Citation Analysis]
12 Zhang J, Chen F, Liu R, Luo J, Huang Y, Shu N, Zheng S, Shao D, Leong KW, Du J. Nanoparticle-enabled concurrent modulation of phagocytosis and repolarization of macrophages for enhanced cancer immunotherapy. Nano Today 2022;47:101651. [DOI: 10.1016/j.nantod.2022.101651] [Reference Citation Analysis]
13 Pei Z, Chen S, Ding L, Liu J, Cui X, Li F, Qiu F. Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis. J Control Release 2022;352:211-41. [PMID: 36270513 DOI: 10.1016/j.jconrel.2022.10.023] [Reference Citation Analysis]
14 Liu Z, Zhang L, Zhong Y. Characterization of osteosarcoma subtypes mediated by macrophage-related genes and creation and validation of a risk score system to quantitatively assess the prognosis of osteosarcoma and reflect the tumor microenvironment. Ann Transl Med 2022;10:1318. [PMID: 36660647 DOI: 10.21037/atm-22-5613] [Reference Citation Analysis]
15 Zhao X, Chai W, Wang T, Chen X, Zhang L, Li F, Liu R. Identification of the prognostic, diagnostic, and biological significance of the miR-148a-3p/cathepsin A axis in hepatocellular carcinoma. J Biochem Mol Toxicol 2022;36:e23208. [PMID: 36065643 DOI: 10.1002/jbt.23208] [Reference Citation Analysis]
16 Yong T, Wei Z, Gan L, Yang X. Extracellular-Vesicle-Based Drug Delivery Systems for Enhanced Antitumor Therapies through Modulating the Cancer-Immunity Cycle. Adv Mater 2022;34:e2201054. [PMID: 35726204 DOI: 10.1002/adma.202201054] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
17 Pan X, Mizukami H, Hara Y, Yamada T, Yamazaki K, Kudoh K, Takeuchi Y, Sasaki T, Kushibiki H, Igawa A, Hakamada K. Diabetes mellitus impacts on expression of DNA mismatch repair protein PMS2 and tumor microenvironment in pancreatic ductal adenocarcinoma. J Diabetes Investig 2023;14:132-44. [PMID: 36453157 DOI: 10.1111/jdi.13929] [Reference Citation Analysis]
18 Wang D, Li H, Wang D, Hao Y, Gui H, Liu J, Zhang Y, Liu J, Yang C. Supramolecular Coassembled Peptide Hydrogels for Efficient Anticancer Therapy by RNS-Based PDT and Immune Microenvironment Regulation. Macromol Biosci 2022;22:e2200359. [PMID: 36208072 DOI: 10.1002/mabi.202200359] [Reference Citation Analysis]
19 Skiba W, Suszczyk D, Pawłowska A, Włodarczyk K, Pańczyszyn A, Wertel I. Clinical Significance of Tie-2-Expressing Monocytes/Macrophages and Angiopoietins in the Progression of Ovarian Cancer-State-of-the-Art. Cells 2022;11. [PMID: 36497114 DOI: 10.3390/cells11233851] [Reference Citation Analysis]
20 Tang B, Zhu J, Wang Y, Chen W, Fang S, Mao W, Xu Z, Yang Y, Weng Q, Zhao Z, Chen M, Ji J. Targeted xCT-mediated Ferroptosis and Protumoral Polarization of Macrophages Is Effective against HCC and Enhances the Efficacy of the Anti-PD-1/L1 Response. Adv Sci (Weinh) 2023;10:e2203973. [PMID: 36442849 DOI: 10.1002/advs.202203973] [Reference Citation Analysis]
21 Huang M, Wang R, Li M, Cai H, Tian R. Peptide-Based [(68)Ga]Ga Labeled PET Tracer for Tumor Imaging by Targeting Tumor-Associated Macrophages. Pharmaceutics 2022;14. [PMID: 36432702 DOI: 10.3390/pharmaceutics14112511] [Reference Citation Analysis]
22 Li Z, Xiang J, Zhang Q, Zhao M, Meng Y, Zhong J, Li T, Jia L, Li K, Lu X, Ao Z, Han D. An engineered hydrogel with low-dose antitumor drugs enhances tumor immunotherapy through tumor interstitial wrap. Front Bioeng Biotechnol 2022;10. [DOI: 10.3389/fbioe.2022.1072393] [Reference Citation Analysis]
23 Song S, Zhang Y, Duan X, Liu C, Du Y, Wang X, Luo Y, Cui Y. HIF-1α/IL-8 axis in hypoxic macrophages promotes esophageal cancer progression by enhancing PD-L1 expression. Cancer Gene Ther 2022. [DOI: 10.1038/s41417-022-00551-5] [Reference Citation Analysis]
24 Khoshnevis M, Brown R, Belluco S, Zahi I, Maciocco L, Bonnefont-rebeix C, Pillet-michelland E, Tranel J, Roger T, Nennig C, Oudoire P, Marcon L, Tillement O, Louis C, Gehan H, Bardiès M, Mariani M, Muzio V, Meunier J, Duchemin C, Michel N, N’tsiba E, Haddad F, Buronfosse T, Carozzo C, Ponce F. Therapeutic efficacy of 166Holmium siloxane in microbrachytherapy of induced glioblastoma in minipig tumor model. Front Oncol 2022;12. [DOI: 10.3389/fonc.2022.923679] [Reference Citation Analysis]
25 Kitaeva KV, Chulpanova DS, Zhuravleva MN, Filin IY, Deviatiiarov RM, Ballard-reisch AC, Rizvanov AA, Solovyeva VV. Characteristics and Resistance to Cisplatin of Human Neuroblastoma Cells Co-Cultivated with Immune and Stromal Cells. Bioengineering 2022;9:655. [DOI: 10.3390/bioengineering9110655] [Reference Citation Analysis]
26 Agarwal S, Chauhan A, Singh K, Kaur R, Masih M, Gautam PK. Immunomodulatory effects of β-defensin 2 on tumor-associated macrophages induced antitumor function in breast cancer.. [DOI: 10.21203/rs.3.rs-2178417/v1] [Reference Citation Analysis]
27 Chaib M, Hafeez BB, Mandil H, Daria D, Pingili AK, Kumari S, Sikander M, Kashyap VK, Chen GY, Anning E, Tripathi MK, Khan S, Behrman S, Yallapu MM, Jaggi M, Makowski L, Chauhan SC. Reprogramming of pancreatic adenocarcinoma immunosurveillance by a microbial probiotic siderophore. Commun Biol 2022;5:1181. [PMID: 36333531 DOI: 10.1038/s42003-022-04102-4] [Reference Citation Analysis]
28 Zheng F, Zhang W, Yang B, Chen M. Multi-omics profiling identifies C1QA/B(+) macrophages with multiple immune checkpoints associated with esophageal squamous cell carcinoma (ESCC) liver metastasis. Ann Transl Med 2022;10:1249. [PMID: 36544679 DOI: 10.21037/atm-22-5351] [Reference Citation Analysis]
29 Zhang Z, Hu Y, Chen Y, Chen Z, Zhu Y, Chen M, Xia J, Sun Y, Xu W. Immunometabolism in the tumor microenvironment and its related research progress. Front Oncol 2022;12. [DOI: 10.3389/fonc.2022.1024789] [Reference Citation Analysis]
30 Chen Y, Gao Y, Ma X, Wang Y, Liu J, Yang C, Wang Y, Bao C, Song X, Feng Y, Sun Y, Qiao S. A study on the correlation between M2 macrophages and regulatory T cells in the progression of colorectal cancer. Int J Biol Markers 2022. [DOI: 10.1177/03936155221132572] [Reference Citation Analysis]
31 Liu Z, Xiang Y, Zheng Y, Kang X. Advancing immune checkpoint blockade in colorectal cancer therapy with nanotechnology. Front Immunol 2022;13:1027124. [DOI: 10.3389/fimmu.2022.1027124] [Reference Citation Analysis]
32 Yu L, Zhang J, Li Y. Effects of microenvironment in osteosarcoma on chemoresistance and the promise of immunotherapy as an osteosarcoma therapeutic modality. Front Immunol 2022;13:871076. [DOI: 10.3389/fimmu.2022.871076] [Reference Citation Analysis]
33 Lyu L, Cai Y, Zhang G, Jing Z, Liang J, Zhang R, Dang X, Zhang C. Exosomes derived from M2 macrophages induce angiogenesis to promote wound healing. Front Mol Biosci 2022;9:1008802. [DOI: 10.3389/fmolb.2022.1008802] [Reference Citation Analysis]
34 Jiang Y, Qu X, Zhang M, Zhang L, Yang T, Ma M, Jing M, Zhang N, Song R, Zhang Y, Yang Z, Zhang Y, Pu Y, Fan J. Identification of a six-gene prognostic signature for bladder cancer associated macrophage. Front Immunol 2022;13:930352. [DOI: 10.3389/fimmu.2022.930352] [Reference Citation Analysis]
35 Jiang Z, Zhang W, Zhang J, Liu T, Xing J, Zhang H, Tang D. Nanomaterial-Based Drug Delivery Systems: A New Weapon for Cancer Immunotherapy. Int J Nanomedicine 2022;17:4677-96. [PMID: 36211025 DOI: 10.2147/IJN.S376216] [Reference Citation Analysis]
36 Qu G, Xu Y, Lu Z, Nie H, Tang C, Hou J, Wen X, Jovicic N. Prognostic Signature Development on the Basis of Macrophage Phagocytosis-Mediated Oxidative Phosphorylation in Bladder Cancer. Oxidative Medicine and Cellular Longevity 2022;2022:1-39. [DOI: 10.1155/2022/4754935] [Reference Citation Analysis]
37 Xu M, Yang L, Lin Y, Lu Y, Bi X, Jiang T, Deng W, Zhang L, Yi W, Xie Y, Li M. Emerging nanobiotechnology for precise theranostics of hepatocellular carcinoma. J Nanobiotechnology 2022;20:427. [PMID: 36175957 DOI: 10.1186/s12951-022-01615-2] [Reference Citation Analysis]
38 Cao H, Gao H, Wang L, Cheng Y, Wu X, Shen X, Wang H, Wang Z, Zhan P, Liu J, Li Z, Kong D, Shi Y, Ding D, Wang Y. Biosynthetic Dendritic Cell-Exocytosed Aggregation-Induced Emission Nanoparticles for Synergistic Photodynamic Immunotherapy. ACS Nano 2022;16:13992-4006. [PMID: 35960889 DOI: 10.1021/acsnano.2c03597] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
39 Zhao Y, Bai Y, Shen M, Li Y. Therapeutic strategies for gastric cancer targeting immune cells: Future directions. Front Immunol 2022;13:992762. [DOI: 10.3389/fimmu.2022.992762] [Reference Citation Analysis]
40 Ashton AW, Zhang Y, Cazzolli R, Honn KV. The Role and Regulation of Thromboxane A2 Signaling in Cancer-Trojan Horses and Misdirection. Molecules 2022;27:6234. [DOI: 10.3390/molecules27196234] [Reference Citation Analysis]
41 Wang DR, Wu XL, Sun YL. Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther 2022;7:331. [PMID: 36123348 DOI: 10.1038/s41392-022-01136-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
42 Han Y, Sun J, Yang Y, Liu Y, Lou J, Pan H, Yao J, Han W. TMP195 Exerts Antitumor Effects on Colorectal Cancer by Promoting M1 Macrophages Polarization. Int J Biol Sci 2022;18:5653-66. [PMID: 36263186 DOI: 10.7150/ijbs.73264] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Liu Q, Zhao H, Guo Y, Zhang K, Shang F, Liu T. Bioinformatics-Based Analysis: Noncoding RNA-Mediated COL10A1 Is Associated with Poor Prognosis and Immune Cell Infiltration in Pancreatic Cancer. Journal of Healthcare Engineering 2022;2022:1-16. [DOI: 10.1155/2022/7904982] [Reference Citation Analysis]
44 Zhang J, Guo Q, Wang Q, Duan Y. CD3‐T‐cell‐engager (TCE) therapies to overcome solid tumors: Beyond BiTEs. MedComm – Biomaterials and Applications 2022;1. [DOI: 10.1002/mba2.20] [Reference Citation Analysis]
45 Gao J, Li C, Wang X, Sun X, Zhang R, chen C, Yu M, Liu Y, Zhu Y, Chen J. Oridonin attenuates lung inflammation and fibrosis in silicosis via covalent targeting iNOS. Biomedicine & Pharmacotherapy 2022;153:113532. [DOI: 10.1016/j.biopha.2022.113532] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
46 Lv M. WD repeat domain 6 as a novelty prognostic biomarker correlates with immune infiltration in lung cancer: A preliminary study. Immunity Inflam & Disease 2022;10. [DOI: 10.1002/iid3.681] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
47 Yang Y, Lin Z, Cai Z, Huang K, Li M, Wang X, Lin Y, Chen S, Yang Z. A composite score based on immune-related gene prognostic index and m6A risk score of head and neck squamous cell carcinoma.. [DOI: 10.21203/rs.3.rs-1987322/v1] [Reference Citation Analysis]
48 Wan H, Lu S, Xu L, Yuan K, Xiao Y, Xie K, Wu H. Immune-Related Biomarkers Improve Performance of Risk Prediction Models for Survival in Patients With Hepatocellular Carcinoma. Front Oncol 2022;12:925362. [DOI: 10.3389/fonc.2022.925362] [Reference Citation Analysis]
49 Wozniakova M, Skarda J, Raska M. The Role of Tumor Microenvironment and Immune Response in Colorectal Cancer Development and Prognosis. Pathol Oncol Res 2022;28:1610502. [DOI: 10.3389/pore.2022.1610502] [Reference Citation Analysis]
50 Li W, Wu F, Zhao S, Shi P, Wang S, Cui D. Correlation between PD-1/PD-L1 expression and polarization in tumor-associated macrophages: A key player in tumor immunotherapy. Cytokine Growth Factor Rev 2022:S1359-6101(22)00054-5. [PMID: 35871139 DOI: 10.1016/j.cytogfr.2022.07.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Zhao C, Deng H, Chen X. Harnessing immune response using reactive oxygen Species-Generating/Eliminating inorganic biomaterials for disease treatment. Adv Drug Deliv Rev 2022;188:114456. [PMID: 35843505 DOI: 10.1016/j.addr.2022.114456] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Huang Q, Wu M, Wu X, Zhang Y, Xia Y. Muscle-to-tumor crosstalk: The effect of exercise-induced myokine on cancer progression. Biochim Biophys Acta Rev Cancer 2022;1877:188761. [PMID: 35850277 DOI: 10.1016/j.bbcan.2022.188761] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
53 Geng R, Song J, Zhong Z, Ni S, Liu W, He Z, Gan S, Huang Q, Yu H, Bai J, Liu J. Crosstalk of Redox-Related Subtypes, Establishment of a Prognostic Model and Immune Responses in Endometrial Carcinoma. Cancers 2022;14:3383. [DOI: 10.3390/cancers14143383] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
54 Sun N, Zhao X. Therapeutic Implications of FABP4 in Cancer: An Emerging Target to Tackle Cancer. Front Pharmacol 2022;13:948610. [DOI: 10.3389/fphar.2022.948610] [Reference Citation Analysis]
55 Zi Y, Yang K, He J, Wu Z, Liu J, Zhang W. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv Drug Deliv Rev 2022;188:114449. [PMID: 35835353 DOI: 10.1016/j.addr.2022.114449] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
56 Wang G, Yang L, Wang Y, Hu R, Zhang K, Guo T, Chen B, Jiang X, Cui R. Characterization of Immune-Related Molecular Subtypes and a Prognostic Signature Correlating With the Response to Immunotherapy in Patients With Gastric Cancer. Front Immunol 2022;13:939836. [DOI: 10.3389/fimmu.2022.939836] [Reference Citation Analysis]
57 Wu G, Chen M, Ren H, Sha X, He M, Ren K, Qi J, Lin F. AP3S1 is a Novel Prognostic Biomarker and Correlated With an Immunosuppressive Tumor Microenvironment in Pan-Cancer. Front Cell Dev Biol 2022;10:930933. [DOI: 10.3389/fcell.2022.930933] [Reference Citation Analysis]
58 Xie Q, Huang X, Huang W, Liu F. PD-L2 Serves as a Potential Prognostic Biomarker That Correlates With Immune Infiltration and May Predict Therapeutic Sensitivity in Lower-Grade Gliomas. Front Oncol 2022;12:860640. [PMID: 35756621 DOI: 10.3389/fonc.2022.860640] [Reference Citation Analysis]
59 Li J, Xiang R, Song W, Wu J, Kong C, Fu T. A Novel Ferroptosis-Related LncRNA Pair Prognostic Signature Predicts Immune Landscapes and Treatment Responses for Gastric Cancer Patients. Front Genet 2022;13:899419. [DOI: 10.3389/fgene.2022.899419] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Zhou Z, Wang Z, Gao J, Lin Z, Wang Y, Shan P, Li M, Zhou T, Li P. Noncoding RNA-mediated macrophage and cancer cell crosstalk in hepatocellular carcinoma. Mol Ther Oncolytics 2022;25:98-120. [PMID: 35506150 DOI: 10.1016/j.omto.2022.03.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
61 Hadjigol S, Shah BA, O’brien-simpson NM. The ‘Danse Macabre’—Neutrophils the Interactive Partner Affecting Oral Cancer Outcomes. Front Immunol 2022;13:894021. [DOI: 10.3389/fimmu.2022.894021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Zeng W, Yu M, Chen T, Liu Y, Yi Y, Huang C, Tang J, Li H, Ou M, Wang T, Wu M, Mei L. Polypyrrole Nanoenzymes as Tumor Microenvironment Modulators to Reprogram Macrophage and Potentiate Immunotherapy. Adv Sci (Weinh) 2022;:e2201703. [PMID: 35678111 DOI: 10.1002/advs.202201703] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
63 Li YR, Brown J, Yu Y, Lee D, Zhou K, Dunn ZS, Hon R, Wilson M, Kramer A, Zhu Y, Fang Y, Yang L. Targeting Immunosuppressive Tumor-Associated Macrophages Using Innate T Cells for Enhanced Antitumor Reactivity. Cancers (Basel) 2022;14:2749. [PMID: 35681730 DOI: 10.3390/cancers14112749] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
64 Chen G, Song H, Yang Z, Du T, Zheng Y, Lu Z, Zhang K, Wei D. AQP5 Is a Novel Prognostic Biomarker in Pancreatic Adenocarcinoma. Front Oncol 2022;12:890193. [PMID: 35619903 DOI: 10.3389/fonc.2022.890193] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Ma J, Huang L, Gao YB, Li MX, Chen LL, Yang L. M2 macrophage facilitated angiogenesis in cutaneous squamous cell carcinoma via circ_TNFRSF21/miR-3619-5p/ROCK axis. Kaohsiung J Med Sci 2022. [PMID: 35593591 DOI: 10.1002/kjm2.12555] [Reference Citation Analysis]
66 Yang D, Yang L, Cai J, Li H, Xing Z, Hou Y. Phosphoinositide 3-kinase/Akt and its related signaling pathways in the regulation of tumor-associated macrophages polarization. Mol Cell Biochem 2022. [PMID: 35590082 DOI: 10.1007/s11010-022-04461-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
67 Tie Y, Tang F, Wei YQ, Wei XW. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol 2022;15:61. [PMID: 35585567 DOI: 10.1186/s13045-022-01282-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
68 Gao S, Sugimura R. The Single-Cell Level Perspective of the Tumor Microenvironment and Its Remodeling by CAR-T Cells. Cancer Treat Res 2022;183:275-85. [PMID: 35551664 DOI: 10.1007/978-3-030-96376-7_10] [Reference Citation Analysis]
69 Guo Y, Sun W, Gao W, Li L, Liang Y, Mei Z, Liu B, Wang R, Zhang Z. Long Noncoding RNA H19 Derived from M2 Tumor-Associated Macrophages Promotes Bladder Cell Autophagy via Stabilizing ULK1. Journal of Oncology 2022;2022:1-11. [DOI: 10.1155/2022/3465459] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
70 Fernandes B, Feltes PK, Luft C, Nazario LR, Jeckel CMM, Antunes IF, Elsinga PH, de Vries EFJ. Potential PET tracers for imaging of tumor-associated macrophages. EJNMMI Radiopharm Chem 2022;7:11. [PMID: 35526184 DOI: 10.1186/s41181-022-00163-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Li Y, Yu Y, Kramer A, Hon R, Wilson M, Brown J, Yang L. An Ex Vivo 3D Tumor Microenvironment-Mimicry Culture to Study TAM Modulation of Cancer Immunotherapy. Cells 2022;11:1583. [DOI: 10.3390/cells11091583] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
72 Lu T, Zhang Z, Zhang J, Pan X, Zhu X, Wang X, Li Z, Ruan M, Li H, Chen W, Yan M. CD73 in small extracellular vesicles derived from HNSCC defines tumour-associated immunosuppression mediated by macrophages in the microenvironment. J Extracell Vesicles 2022;11:e12218. [PMID: 35524455 DOI: 10.1002/jev2.12218] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
73 Guo Y, Li Z, Sun W, Gao W, Liang Y, Mei Z, Liu B, Wang R, Zhang Z. M2 Tumor Associate Macrophage- (TAM-) Derived lncRNA HISLA Promotes EMT Potential in Bladder Cancer. Journal of Oncology 2022;2022:1-13. [DOI: 10.1155/2022/8268719] [Reference Citation Analysis]
74 Song Y, Bugada L, Li R, Hu H, Zhang L, Li C, Yuan H, Rajanayake KK, Truchan NA, Wen F, Gao W, Sun D. Albumin nanoparticle containing a PI3Kγ inhibitor and paclitaxel in combination with α-PD1 induces tumor remission of breast cancer in mice. Sci Transl Med 2022;14:eabl3649. [PMID: 35507675 DOI: 10.1126/scitranslmed.abl3649] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
75 Chen J, Gao G, Li L, Ding J, Chen X, Lei J, Long H, Wu L, Long X, He L, Shen Y, Yang J, Lu Y, Sun Y. Pan-Cancer Study of SHC-Adaptor Protein 1 (SHC1) as a Diagnostic, Prognostic and Immunological Biomarker in Human Cancer. Front Genet 2022;13:817118. [DOI: 10.3389/fgene.2022.817118] [Reference Citation Analysis]
76 Zhang J, Sun X, Zhao X, Yang C, Shi M, Zhang B, Hu H, Qiao M, Chen D, Zhao X. Combining immune checkpoint blockade with ATP-based immunogenic cell death amplifier for cancer chemo-immunotherapy. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.05.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
77 Hu Y, Sun Y, Wan C, Dai X, Wu S, Lo PC, Huang J, Lovell JF, Jin H, Yang K. Microparticles: biogenesis, characteristics and intervention therapy for cancers in preclinical and clinical research. J Nanobiotechnology 2022;20:189. [PMID: 35418077 DOI: 10.1186/s12951-022-01358-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
78 Guo Y, Xie Y, Luo Y. The Role of Long Non-Coding RNAs in the Tumor Immune Microenvironment. Front Immunol 2022;13:851004. [PMID: 35222443 DOI: 10.3389/fimmu.2022.851004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
79 Hou L, Gong X, Yang J, Zhang H, Yang W, Chen X. Hybrid-Membrane-Decorated Prussian Blue for Effective Cancer Immunotherapy via Tumor-Associated Macrophages Polarization and Hypoxia Relief. Adv Mater 2022;34:e2200389. [PMID: 35103352 DOI: 10.1002/adma.202200389] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
80 Ning WR, Jiang D, Liu XC, Huang YF, Peng ZP, Jiang ZZ, Kang T, Zhuang SM, Wu Y, Zheng L. Carbonic anhydrase XII mediates the survival and prometastatic functions of macrophages in human hepatocellular carcinoma. J Clin Invest 2022;132:e153110. [PMID: 35362480 DOI: 10.1172/JCI153110] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
81 Han I, Jeong C, Yang J, Park S, Hwang D, Bae H. Therapeutic Effect of Melittin–dKLA Targeting Tumor-Associated Macrophages in Melanoma. IJMS 2022;23:3094. [DOI: 10.3390/ijms23063094] [Reference Citation Analysis]
82 Tanigawa K, Tsukamoto S, Koma YI, Kitamura Y, Urakami S, Shimizu M, Fujikawa M, Kodama T, Nishio M, Shigeoka M, Kakeji Y, Yokozaki H. S100A8/A9 Induced by Interaction with Macrophages in Esophageal Squamous Cell Carcinoma Promotes the Migration and Invasion of Cancer Cells via Akt and p38 MAPK Pathways. Am J Pathol 2022;192:536-52. [PMID: 34954212 DOI: 10.1016/j.ajpath.2021.12.002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
83 Jian H, Wang X, Song P, Wu X, Zheng R, Wang Y, Zhang H. Tumor microcalcification-mediated relay drug delivery for photodynamic immunotherapy of breast cancer. Acta Biomater 2022;140:518-29. [PMID: 34923096 DOI: 10.1016/j.actbio.2021.12.014] [Reference Citation Analysis]
84 Park S. The Tuber Extract of Pinellia ternata (Thunb.) Brei Suppresses Cancer Cell Migration by Regulating Tumor-associated Macrophages. kjopp 2022;36:1-6. [DOI: 10.15188/kjopp.2022.02.36.1.1] [Reference Citation Analysis]
85 Li Y, Chen Z, Han J, Ma X, Zheng X, Chen J. Functional and Therapeutic Significance of Tumor-Associated Macrophages in Colorectal Cancer. Front Oncol 2022;12:781233. [PMID: 35186730 DOI: 10.3389/fonc.2022.781233] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
86 Ma J, Chen S, Liu Y, Han H, Gong M, Song Y. The role of exosomal miR-181b in the crosstalk between NSCLC cells and tumor-associated macrophages. Genes Genomics 2022. [PMID: 35150402 DOI: 10.1007/s13258-022-01227-y] [Reference Citation Analysis]
87 Liu D, Liu S, Fang Y, Liu L, Hu K. Comprehensive Analysis of the Expression and Prognosis for ITGBs: Identification of ITGB5 as a Biomarker of Poor Prognosis and Correlated with Immune Infiltrates in Gastric Cancer. Front Cell Dev Biol 2022;9:816230. [DOI: 10.3389/fcell.2021.816230] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Zhao C, Han Q, Ying H, Gu X, Yang N, Li L, Zhang Q. TNFSF15 facilitates differentiation and polarization of macrophages toward M1 phenotype to inhibit tumor growth. OncoImmunology 2022;11:2032918. [DOI: 10.1080/2162402x.2022.2032918] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
89 Zhao L, Zhang H, Liu X, Xue S, Chen D, Zou J, Jiang H. TGR5 deficiency activates antitumor immunity in non-small cell lung cancer via restraining M2 macrophage polarization. Acta Pharm Sin B 2022;12:787-800. [PMID: 35256947 DOI: 10.1016/j.apsb.2021.07.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
90 Song Y, Huang Y, Zhou F, Ding J, Zhou W. Macrophage-targeted nanomedicine for chronic diseases immunotherapy. Chinese Chemical Letters 2022;33:597-612. [DOI: 10.1016/j.cclet.2021.08.090] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
91 Liu H, Zhao D, Li H, Zhang W, Lin Q, Wang X, Zheng S, Zhang L, Li L, Hu S, Hu Y. Blocking iASPP/Nrf2/M-CSF axis improves anti-cancer effect of chemotherapy-induced senescence by attenuating M2 polarization. Cell Death Dis 2022;13:166. [DOI: 10.1038/s41419-022-04611-4] [Reference Citation Analysis]
92 Li C, Li R, Hu X, Zhou G, Jiang G. Tumor-promoting mechanisms of macrophage-derived extracellular vesicles-enclosed microRNA-660 in breast cancer progression. Breast Cancer Res Treat 2022. [PMID: 35084622 DOI: 10.1007/s10549-021-06433-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
93 Ding J, He X, Luo W, Zhou W, Chen R, Cao G, Chen B, Xiong M. Development and Validation of a Pyroptosis-Related Signature for Predicting Prognosis in Hepatocellular Carcinoma. Front Genet 2022;13:801419. [DOI: 10.3389/fgene.2022.801419] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
94 Liu Y, Shang W, Liu H, Hui H, Wu J, Zhang W, Gao P, Guo K, Guo Y, Tian J. Biomimetic manganese-eumelanin nanocomposites for combined hyperthermia-immunotherapy against prostate cancer. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01248-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
95 Sun X, Zhang J, Zhao X, Yang C, Shi M, Zhang B, Hu H, Qiao M, Chen D, Zhao X. Binary regulation of the tumor microenvironment by a pH-responsive reversible shielding nanoplatform for improved tumor chemo-immunotherapy. Acta Biomater 2022;138:505-17. [PMID: 34798317 DOI: 10.1016/j.actbio.2021.11.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
96 Li Q, Sun L, Liu L, Ran Q, Du X, Yang Q, Wang Y, Li Y, Chen Y, Weng X, Cai W, Zhu X. Chamaejasmenin B, an Inhibitor for Metastatic Outgrowth, Reversed M2-Dominant Macrophage Polarization in Breast Tumor Microenvironment. Front Immunol 2021;12:774230. [PMID: 35027915 DOI: 10.3389/fimmu.2021.774230] [Reference Citation Analysis]
97 Dai H, Lou S, Zhang Y, Thanawala M, Huang KC, Ji L, Carden S, Liao T, Abbassi M, Shu CJ, Lantermann A, Sadaghiani M, Blom D, Wagner J, Huang P. Transcriptional neural-like signaling contributes to an immune-suppressive tumor microenvironment. FASEB Bioadv 2022;4:76-89. [PMID: 35024574 DOI: 10.1096/fba.2021-00076] [Reference Citation Analysis]
98 Alfahad AJ, Alzaydi MM, Aldossary AM, Alshehri AA, Almughem FA, Zaidan NM, Tawfik EA. Current views in chronic obstructive pulmonary disease pathogenesis and management. Saudi Pharm J 2021;29:1361-73. [PMID: 35002373 DOI: 10.1016/j.jsps.2021.10.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
99 Jiang J, Mei J, Yi S, Feng C, Ma Y, Liu Y, Liu Y, Chen C. Tumor associated macrophage and microbe: The potential targets of tumor vaccine delivery. Adv Drug Deliv Rev 2022;180:114046. [PMID: 34767863 DOI: 10.1016/j.addr.2021.114046] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
100 Maurya BK, Pandey A, Trigun SK. Hyperglycolysis-Inflammation Connect as a Mechanistic Hot Spot in Oxidatively Compromised Cancer. Handbook of Oxidative Stress in Cancer: Mechanistic Aspects 2022. [DOI: 10.1007/978-981-15-9411-3_134] [Reference Citation Analysis]
101 Zhou Z. Macrophages and their antitumor activity. Recent Advancements in Microbial Diversity 2022. [DOI: 10.1016/b978-0-12-822368-0.00024-4] [Reference Citation Analysis]
102 Han X, Alu A, Liu H, Shi Y, Wei X, Cai L, Wei Y. Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioactive Materials 2022. [DOI: 10.1016/j.bioactmat.2022.01.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
103 Su L, Chen G, Liu Z, Min Y, Wang AZ. Delivery strategies to overcome tumor immunotherapy resistance. Systemic Drug Delivery Strategies 2022. [DOI: 10.1016/b978-0-323-85781-9.00019-1] [Reference Citation Analysis]
104 Singh N, Maurya P, Mishra N, Singh S, Pal RR, Singh P, Parashar P, Sonkar A, Saraf SA. Surface Modification of Nanoparticles for Macrophage Targeting. Macrophage Targeted Delivery Systems 2022. [DOI: 10.1007/978-3-030-84164-5_8] [Reference Citation Analysis]
105 Roy R, Man E, Aldakhlallah R, Rashes E, Moses MA. The Tumor and Its Microenvironment as Complementary Sources of Cancer Biomarkers. Biomarkers of the Tumor Microenvironment 2022. [DOI: 10.1007/978-3-030-98950-7_22] [Reference Citation Analysis]
106 Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022;180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
107 Zhu S, Yi M, Wu Y, Dong B, Wu K. Roles of tumor-associated macrophages in tumor progression: implications on therapeutic strategies. Exp Hematol Oncol 2021;10. [DOI: 10.1186/s40164-021-00252-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
108 Guo C, Su Y, Wang B, Chen Q, Guo H, Kong M, Chen D. Novel polysaccharide building hybrid nanoparticles: remodelling TAMs to target ERα-positive breast cancer. J Drug Target 2021;:1-13. [PMID: 34927506 DOI: 10.1080/1061186X.2021.2020798] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
109 Zhang Q, Li S, Bai L, Yu D, Li H, Tong R. Self-Delivery Janus-Prodrug for Precise Immuno-Chemotherapy of Colitis-Associated Colorectal Cancer. ACS Appl Mater Interfaces 2021. [PMID: 34958191 DOI: 10.1021/acsami.1c20031] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
110 Ruirui Z, He J, Xu X, Li S, Peng H, Deng Z, Huang Y. PLGA-based drug delivery system for combined therapy of cancer: research progress. Mater Res Express 2021;8:122002. [DOI: 10.1088/2053-1591/ac3f5e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
111 Wang Z, Liu Y, Zhang J, Zhao R, Zhou X, Wang H. An Immune-Related Long Noncoding RNA Signature as a Prognostic Biomarker for Human Endometrial Cancer. J Oncol 2021;2021:9972454. [PMID: 34925511 DOI: 10.1155/2021/9972454] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
112 Muri J, Chylikova J, Skarda J, Miklosova M, Kamarad V. The role of tumor-associated macrophages in solid malignancies - an overview of current knowledge. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. [DOI: 10.5507/bp.2021.070] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
113 Hayden E, Holliday H, Lehmann R, Khan A, Tsoli M, Rayner BS, Ziegler DS. Therapeutic Targets in Diffuse Midline Gliomas-An Emerging Landscape. Cancers (Basel) 2021;13:6251. [PMID: 34944870 DOI: 10.3390/cancers13246251] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
114 Saleem K, Ahmad P, Asif JA, Karobari MI, Noorani TY. The impact of drug therapy on minor oral surgery procedures. Dent Update 2021;48:957-964. [DOI: 10.12968/denu.2021.48.11.957] [Reference Citation Analysis]
115 Pan J, Ma Y, Li Y, Feng C, Liu Y. A designed nanomedicine reprogrammes the phenotype and enhances the phagocytic ability of macrophages to ameliorate lung cancer in a mouse model. Biochemical Engineering Journal 2021;176:108172. [DOI: 10.1016/j.bej.2021.108172] [Reference Citation Analysis]
116 Duan S, Wang S, Huang T, Wang J, Yuan X. circRNAs: Insight Into Their Role in Tumor-Associated Macrophages. Front Oncol 2021;11:780744. [DOI: 10.3389/fonc.2021.780744] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
117 Neganova M, Liu J, Aleksandrova Y, Klochkov S, Fan R. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment. Cancers (Basel) 2021;13:6062. [PMID: 34885171 DOI: 10.3390/cancers13236062] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
118 Yang H, Lu S, Wang S, Liu L, Zhu B, Yu S, Yang S, Chang J. Evolution of the protein corona affects macrophage polarization. Int J Biol Macromol 2021;191:192-200. [PMID: 34547310 DOI: 10.1016/j.ijbiomac.2021.09.081] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
119 Zhao Y, Zhang B, Zhang Q, Ma X, Feng H. Tumor-associated macrophages in osteosarcoma. J Zhejiang Univ Sci B 2021;22:885-92. [PMID: 34783219 DOI: 10.1631/jzus.B2100029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
120 Wu GJ, Ren K, He M, Xu JX, Li ZQ, Bo D, Xue Q. SNX20 Expression Correlates with Immune Cell Infiltration and Can Predict Prognosis in Lung Adenocarcinoma. Int J Gen Med 2021;14:7599-611. [PMID: 34764676 DOI: 10.2147/IJGM.S337198] [Reference Citation Analysis]
121 Gu WJ, Shen YW, Zhang LJ, Zhang H, Nagle DG, Luan X, Liu SH. The multifaceted involvement of exosomes in tumor progression: Induction and inhibition. MedComm (2020) 2021;2:297-314. [PMID: 34766148 DOI: 10.1002/mco2.49] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
122 Goswami KK, Bose A, Baral R. Macrophages in tumor: An inflammatory perspective. Clin Immunol 2021;232:108875. [PMID: 34740843 DOI: 10.1016/j.clim.2021.108875] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
123 He Y, Liu T, Dai S, Xu Z, Wang L, Luo F. Tumor-Associated Extracellular Matrix: How to Be a Potential Aide to Anti-tumor Immunotherapy? Front Cell Dev Biol 2021;9:739161. [PMID: 34733848 DOI: 10.3389/fcell.2021.739161] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
124 Yu W, Hu C, Gao H. Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages. Adv Drug Deliv Rev 2021;178:113909. [PMID: 34352354 DOI: 10.1016/j.addr.2021.113909] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
125 Yang Y, Guo T, Xu J, Xiong Y, Cui X, Ke Y, Wang C. Micelle nanovehicles for co-delivery of Lepidium meyenii Walp. (maca) polysaccharide and chloroquine to tumor-associated macrophages for synergistic cancer immunotherapy. Int J Biol Macromol 2021;189:577-89. [PMID: 34450149 DOI: 10.1016/j.ijbiomac.2021.08.155] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
126 Ieni A, Caruso RA, Pizzimenti C, Giuffrè G, Irato E, Rigoli L, Navarra G, Fadda G, Tuccari G. M1 Polarized Tumor-Associated Macrophages (TAMs) as Promising Prognostic Signature in Stage I–II Gastric Adenocarcinomas. GastrointestDisord 2021;3:207-17. [DOI: 10.3390/gidisord3040020] [Reference Citation Analysis]
127 Xu T, Yu S, Zhang J, Wu S. Dysregulated tumor-associated macrophages in carcinogenesis, progression and targeted therapy of gynecological and breast cancers. J Hematol Oncol 2021;14:181. [PMID: 34717710 DOI: 10.1186/s13045-021-01198-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
128 Metrangolo V, Ploug M, Engelholm LH. The Urokinase Receptor (uPAR) as a "Trojan Horse" in Targeted Cancer Therapy: Challenges and Opportunities. Cancers (Basel) 2021;13:5376. [PMID: 34771541 DOI: 10.3390/cancers13215376] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
129 Huang H, Hu Y, Guo L, Wen Z. Integrated bioinformatics analyses of key genes involved in hepatocellular carcinoma immunosuppression. Oncol Lett 2021;22:830. [PMID: 34691257 DOI: 10.3892/ol.2021.13091] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
130 Mo L, Xu L, Jia M, Su B, Hu Y, Hu Z, Li H, Zhao C, Zhao Z, Li J. Shikonin suppresses the epithelial-to-mesenchymal transition by downregulating NHE1 in bladder cancer cells. J Cancer 2021;12:6814-24. [PMID: 34659570 DOI: 10.7150/jca.63429] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
131 Zhou B, Gao S. Comprehensive Analysis of Clinical Significance, Immune Infiltration and Biological Role of m6A Regulators in Early-Stage Lung Adenocarcinoma. Front Immunol 2021;12:698236. [PMID: 34650549 DOI: 10.3389/fimmu.2021.698236] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
132 He Y, de Araújo Júnior RF, Cruz LJ, Eich C. Functionalized Nanoparticles Targeting Tumor-Associated Macrophages as Cancer Therapy. Pharmaceutics 2021;13:1670. [PMID: 34683963 DOI: 10.3390/pharmaceutics13101670] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
133 Hou F, Xiao K, Tang L, Xie L. Diversity of Macrophages in Lung Homeostasis and Diseases. Front Immunol 2021;12:753940. [PMID: 34630433 DOI: 10.3389/fimmu.2021.753940] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
134 Mu G, Zhu Y, Dong Z, Shi L, Deng Y, Li H. Calmodulin 2 Facilitates Angiogenesis and Metastasis of Gastric Cancer via STAT3/HIF-1A/VEGF-A Mediated Macrophage Polarization. Front Oncol 2021;11:727306. [PMID: 34604066 DOI: 10.3389/fonc.2021.727306] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
135 Soni SS, Rodell CB. Polymeric materials for immune engineering: Molecular interaction to biomaterial design. Acta Biomater 2021;133:139-52. [PMID: 33484909 DOI: 10.1016/j.actbio.2021.01.016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
136 Chen J, Zhang K, Zhi Y, Wu Y, Chen B, Bai J, Wang X. Tumor-derived exosomal miR-19b-3p facilitates M2 macrophage polarization and exosomal LINC00273 secretion to promote lung adenocarcinoma metastasis via Hippo pathway. Clin Transl Med 2021;11:e478. [PMID: 34586722 DOI: 10.1002/ctm2.478] [Cited by in Crossref: 10] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
137 Cui HY, Rong JS, Chen J, Guo J, Zhu JQ, Ruan M, Zuo RR, Zhang SS, Qi JM, Zhang BH. Exosomal microRNA-588 from M2 polarized macrophages contributes to cisplatin resistance of gastric cancer cells. World J Gastroenterol 2021; 27(36): 6079-6092 [PMID: 34629821 DOI: 10.3748/wjg.v27.i36.6079] [Cited by in CrossRef: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
138 Lu T, Prakash J. Nanomedicine Strategies to Enhance Tumor Drug Penetration in Pancreatic Cancer. Int J Nanomedicine 2021;16:6313-28. [PMID: 34552327 DOI: 10.2147/IJN.S279192] [Reference Citation Analysis]
139 Chen S, Qin F, Wang M, Wei Y, Qian Z, Wei X. Nanoparticles targeting tumor-associated macrophages: A novel anti-tumor therapy. Nano Res 2022;15:2177-95. [DOI: 10.1007/s12274-021-3781-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
140 Lv S, Sylvestre M, Prossnitz AN, Yang LF, Pun SH. Design of Polymeric Carriers for Intracellular Peptide Delivery in Oncology Applications. Chem Rev 2021;121:11653-98. [PMID: 33566580 DOI: 10.1021/acs.chemrev.0c00963] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
141 Zhang L, Wang Z, Li M, Sun P, Bai T, Wang W, Bai H, Gou J, Wang Z. HCG18 Participates in Vascular Invasion of Hepatocellular Carcinoma by Regulating Macrophages and Tumor Stem Cells. Front Cell Dev Biol 2021;9:707073. [PMID: 34527669 DOI: 10.3389/fcell.2021.707073] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
142 Che LH, Liu JW, Huo JP, Luo R, Xu RM, He C, Li YQ, Zhou AJ, Huang P, Chen YY, Ni W, Zhou YX, Liu YY, Li HY, Zhou R, Mo H, Li JM. A single-cell atlas of liver metastases of colorectal cancer reveals reprogramming of the tumor microenvironment in response to preoperative chemotherapy. Cell Discov 2021;7:80. [PMID: 34489408 DOI: 10.1038/s41421-021-00312-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
143 Xie S, Zhang P, Zhang Z, Liu Y, Chen M, Li S, Li X. Bacterial navigation for tumor targeting and photothermally-triggered bacterial ghost transformation for spatiotemporal drug release. Acta Biomater 2021;131:172-84. [PMID: 34171461 DOI: 10.1016/j.actbio.2021.06.030] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
144 Yu Z, Song Y, Cai M, Jiang B, Zhang Z, Wang L, Jiang Y, Zou L, Liu X, Yu N, Mao X, Peng C, Liu S. PPM1D is a potential prognostic biomarker and correlates with immune cell infiltration in hepatocellular carcinoma. Aging (Albany NY) 2021;13:21294-308. [PMID: 34470916 DOI: 10.18632/aging.203459] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
145 Guo Q, Li X, Zhou W, Chu Y, Chen Q, Zhang Y, Li C, Chen H, Liu P, Zhao Z, Wang Y, Zhou Z, Luo Y, Li C, You H, Song H, Su B, Zhang T, Sun T, Jiang C. Sequentially Triggered Bacterial Outer Membrane Vesicles for Macrophage Metabolism Modulation and Tumor Metastasis Suppression. ACS Nano 2021. [PMID: 34382768 DOI: 10.1021/acsnano.1c05613] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
146 Zhukova OV, Arkhipova EV, Kovaleva TF, Ryabov SA, Ivanova IP, Golovacheva AA, Zykova DA, Zaitsev SD. Immunopharmacological Properties of Methacrylic Acid Polymers as Potential Polymeric Carrier Constituents of Anticancer Drugs. Molecules 2021;26:4855. [PMID: 34443443 DOI: 10.3390/molecules26164855] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
147 Wang H, Tian T, Zhang J. Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): From Mechanism to Therapy and Prognosis. Int J Mol Sci 2021;22:8470. [PMID: 34445193 DOI: 10.3390/ijms22168470] [Cited by in Crossref: 23] [Cited by in F6Publishing: 29] [Article Influence: 11.5] [Reference Citation Analysis]
148 Yin F, Fan Y, Xu L, Yin F, He M, Xiao T, Shi X, Wang H. Macrophages loaded with dendrimer-entrapped gold nanoparticles as a theranostic platform for CT imaging-guided combinational therapy of orthotopic osteosarcoma. Chemical Engineering Journal 2021;417:129273. [DOI: 10.1016/j.cej.2021.129273] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
149 Guo L, Zhang X, Pan H, Li Y, Wang J, Li L, Dong Y, Du X, Chen J, Guo F. Prognostic and immunological significance of metastasis associated lung adenocarcinoma transcript 1 among different kinds of cancers. Bioengineered 2021;12:4247-58. [PMID: 34308750 DOI: 10.1080/21655979.2021.1955511] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
150 Wang Z, Wu H, Chen Y, Chen H, Yuan W, Wang X. The Heterogeneity of Infiltrating Macrophages in Metastatic Osteosarcoma and Its Correlation with Immunotherapy. J Oncol 2021;2021:4836292. [PMID: 34335756 DOI: 10.1155/2021/4836292] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
151 Liu Y, Liang S, Jiang D, Gao T, Fang Y, Fu S, Guan L, Zhang Z, Mu W, Chu Q, Liu Y, Zhang N. Manipulation of TAMs functions to facilitate the immune therapy effects of immune checkpoint antibodies. J Control Release 2021;336:621-34. [PMID: 34246701 DOI: 10.1016/j.jconrel.2021.07.009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
152 Moeini P, Niedźwiedzka-Rystwej P. Tumor-Associated Macrophages: Combination of Therapies, the Approach to Improve Cancer Treatment. Int J Mol Sci 2021;22:7239. [PMID: 34281293 DOI: 10.3390/ijms22137239] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
153 Liu X, Xie X, Jiang J, Lin M, Zheng E, Qiu W, Yeung I, Zhu M, Li Q, Xia T, Meng H. Use of Nanoformulation to Target Macrophages for Disease Treatment. Adv Funct Mater 2021;31:2104487. [DOI: 10.1002/adfm.202104487] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
154 Chen Z, Wu T, Yan Z, Zhang M. Identification and Validation of an 11-Ferroptosis Related Gene Signature and Its Correlation With Immune Checkpoint Molecules in Glioma. Front Cell Dev Biol 2021;9:652599. [PMID: 34249910 DOI: 10.3389/fcell.2021.652599] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
155 Zhuang Y, Zhao X, Yuan B, Zeng Z, Chen Y. Blocking the CCL5-CCR5 Axis Using Maraviroc Promotes M1 Polarization of Macrophages Cocultured with Irradiated Hepatoma Cells. J Hepatocell Carcinoma 2021;8:599-611. [PMID: 34178876 DOI: 10.2147/JHC.S300165] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
156 Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S, Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther 2021;6:218. [PMID: 34108441 DOI: 10.1038/s41392-021-00641-0] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 40.0] [Reference Citation Analysis]
157 Zhou X, Liu X, Yang X, Wang L, Hong Y, Lian K, Qiu G, Shang X, Ma Z, Yuan H, Hu F. Tumor progress intercept by intervening in Caveolin-1 related intercellular communication via ROS-sensitive c-Myc targeting therapy. Biomaterials 2021;275:120958. [PMID: 34130142 DOI: 10.1016/j.biomaterials.2021.120958] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
158 Mohammadi MH, Kariminik A. CC and CXC chemokines play key roles in the development of polyomaviruses related pathological conditions. Virol J 2021;18:111. [PMID: 34082771 DOI: 10.1186/s12985-021-01582-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
159 Liang H, Zhang C, Li C, Li C, Wang Y, Lin H. FOXD1 is a prognostic biomarker and correlated with macrophages infiltration in head and neck squamous cell carcinoma. Biosci Rep 2021;41:BSR20202929. [PMID: 34028536 DOI: 10.1042/BSR20202929] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
160 Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. Nat Rev Mater 2021;:1-18. [PMID: 34026278 DOI: 10.1038/s41578-021-00315-x] [Cited by in Crossref: 70] [Cited by in F6Publishing: 79] [Article Influence: 35.0] [Reference Citation Analysis]
161 Ma J, Shayiti F, Ma J, Wei M, Hua T, Zhang R, Su J, Chen P. Tumor-associated macrophage-derived CCL5 promotes chemotherapy resistance and metastasis in prostatic cancer. Cell Biol Int 2021. [PMID: 34003531 DOI: 10.1002/cbin.11630] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
162 Shukla S, Wang C, Beiss V, Cai H, Washington T 2nd, Murray AA, Gong X, Zhao Z, Masarapu H, Zlotnick A, Fiering S, Steinmetz NF. The unique potency of Cowpea mosaic virus (CPMV) in situ cancer vaccine. Biomater Sci 2020;8:5489-503. [PMID: 32914796 DOI: 10.1039/d0bm01219j] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 8.5] [Reference Citation Analysis]
163 Artemova D, Vishnyakova P, Khashchenko E, Elchaninov A, Sukhikh G, Fatkhudinov T. Endometriosis and Cancer: Exploring the Role of Macrophages. Int J Mol Sci 2021;22:5196. [PMID: 34068967 DOI: 10.3390/ijms22105196] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
164 Ricketts TD, Prieto-Dominguez N, Gowda PS, Ubil E. Mechanisms of Macrophage Plasticity in the Tumor Environment: Manipulating Activation State to Improve Outcomes. Front Immunol 2021;12:642285. [PMID: 34025653 DOI: 10.3389/fimmu.2021.642285] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
165 Du Y, Yang Z, Sun Q, Lin M, Wang R, Peng Y, Chen X, Qi X. Engineered Microglia Potentiate the Action of Drugs against Glioma Through Extracellular Vesicles and Tunneling Nanotubes. Adv Healthc Mater 2021;10:e2002200. [PMID: 33644993 DOI: 10.1002/adhm.202002200] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
166 Qian X, Xiao F, Chen YY, Yuan JP, Liu XH, Wang LW, Xiong B. Computerized Assessment of the Tumor-stromal Ratio and Proposal of a Novel Nomogram for Predicting Survival in Invasive Breast Cancer. J Cancer 2021;12:3427-38. [PMID: 33995621 DOI: 10.7150/jca.55750] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
167 Song S, Xia H, Guo M, Wang S, Zhang S, Ma P, Jin Y. Role of macrophage in nanomedicine-based disease treatment. Drug Deliv 2021;28:752-66. [PMID: 33860719 DOI: 10.1080/10717544.2021.1909175] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
168 Li M, Huang T, Li X, Shi Z, Sheng Y, Hu M, Song K. GDC-0575, a CHK1 Inhibitor, Impairs the Development of Colitis and Colitis-Associated Cancer by Inhibiting CCR2+ Macrophage Infiltration in Mice. Onco Targets Ther 2021;14:2661-72. [PMID: 33897258 DOI: 10.2147/OTT.S297132] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
169 Fang Y, Yu A, Ye L, Zhai G. Research progress in tumor targeted immunotherapy. Expert Opin Drug Deliv 2021;18:1067-90. [PMID: 33507117 DOI: 10.1080/17425247.2021.1882992] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
170 Liu X, Zheng S, Peng Y, Zhuang J, Yang Y, Xu Y, Guan G. Construction of the Prediction Model for Locally Advanced Rectal Cancer Following Neoadjuvant Chemoradiotherapy Based on Pretreatment Tumor-Infiltrating Macrophage-Associated Biomarkers. Onco Targets Ther 2021;14:2599-610. [PMID: 33880038 DOI: 10.2147/OTT.S297263] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
171 Cao S, Tang J, Huang Y, Li G, Li Z, Cai W, Yuan Y, Liu J, Huang X, Zhang H. The Road of Solid Tumor Survival: From Drug-Induced Endoplasmic Reticulum Stress to Drug Resistance. Front Mol Biosci 2021;8:620514. [PMID: 33928116 DOI: 10.3389/fmolb.2021.620514] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
172 Liang T, Zhang R, Liu X, Ding Q, Wu S, Li C, Lin Y, Ye Y, Zhong Z, Zhou M. Recent Advances in Macrophage-Mediated Drug Delivery Systems. Int J Nanomedicine 2021;16:2703-14. [PMID: 33854316 DOI: 10.2147/IJN.S298159] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
173 Soni SS, Alsasa A, Rodell CB. Applications of Macrocyclic Host Molecules in Immune Modulation and Therapeutic Delivery. Front Chem 2021;9:658548. [PMID: 33889565 DOI: 10.3389/fchem.2021.658548] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
174 Zhang H, Chen Z, Wang Z, Dai Z, Hu Z, Zhang X, Hu M, Liu Z, Cheng Q. Correlation Between APOBEC3B Expression and Clinical Characterization in Lower-Grade Gliomas. Front Oncol 2021;11:625838. [PMID: 33842328 DOI: 10.3389/fonc.2021.625838] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
175 Duan Z, Luo Y. Targeting macrophages in cancer immunotherapy. Signal Transduct Target Ther 2021;6:127. [PMID: 33767177 DOI: 10.1038/s41392-021-00506-6] [Cited by in Crossref: 95] [Cited by in F6Publishing: 100] [Article Influence: 47.5] [Reference Citation Analysis]
176 Liu C, Zhou X, Zeng H, Wu D, Liu L. HILPDA Is a Prognostic Biomarker and Correlates With Macrophage Infiltration in Pan-Cancer. Front Oncol 2021;11:597860. [PMID: 33816230 DOI: 10.3389/fonc.2021.597860] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
177 Yang S, Zhang Y, Lu S, Yang L, Yu S, Yang H. CaCO 3 -Encapsulated Au Nanoparticles Modulate Macrophages toward M1-like Phenotype. ACS Appl Bio Mater 2021;4:3214-23. [DOI: 10.1021/acsabm.0c01608] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
178 Kubli SP, Berger T, Araujo DV, Siu LL, Mak TW. Beyond immune checkpoint blockade: emerging immunological strategies. Nat Rev Drug Discov 2021. [PMID: 33686237 DOI: 10.1038/s41573-021-00155-y] [Cited by in Crossref: 60] [Cited by in F6Publishing: 67] [Article Influence: 30.0] [Reference Citation Analysis]
179 Du Y, Wang B, Jiang X, Cao J, Yu J, Wang Y, Wang X, Liu H. Identification and Validation of a Stromal EMT Related LncRNA Signature as a Potential Marker to Predict Bladder Cancer Outcome. Front Oncol 2021;11:620674. [PMID: 33747932 DOI: 10.3389/fonc.2021.620674] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
180 He M, Han Y, Cai C, Liu P, Chen Y, Shen H, Xu X, Zeng S. CLEC10A is a prognostic biomarker and correlated with clinical pathologic features and immune infiltrates in lung adenocarcinoma. J Cell Mol Med 2021;25:3391-9. [PMID: 33655701 DOI: 10.1111/jcmm.16416] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
181 Costa da Silva M, Vieira Rocha C, Bañobre-lópez M, Gallo J. Stimulation and Suppression of the Innate Immune System through Nanotechnology. ACS Appl Nano Mater 2021;4:2303-16. [DOI: 10.1021/acsanm.0c03424] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
182 Chen M, Yang D, Sun Y, Liu T, Wang W, Fu J, Wang Q, Bai X, Quan G, Pan X, Wu C. In Situ Self-Assembly Nanomicelle Microneedles for Enhanced Photoimmunotherapy via Autophagy Regulation Strategy. ACS Nano 2021;15:3387-401. [PMID: 33576607 DOI: 10.1021/acsnano.0c10396] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 17.5] [Reference Citation Analysis]
183 Izumi Y, Kanayama M, Shen Z, Kai M, Kawamura S, Akiyama M, Yamamoto M, Nagao T, Okada K, Kawamata N, Toyota S, Ohteki T. An Antibody-Drug Conjugate That Selectively Targets Human Monocyte Progenitors for Anti-Cancer Therapy. Front Immunol 2021;12:618081. [PMID: 33692791 DOI: 10.3389/fimmu.2021.618081] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
184 Lopes N, Correia VG, Palma AS, Brito C. Cracking the Breast Cancer Glyco-Code through Glycan-Lectin Interactions: Targeting Immunosuppressive Macrophages. Int J Mol Sci 2021;22:1972. [PMID: 33671245 DOI: 10.3390/ijms22041972] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
185 Liu J, Xu T, Jin Y, Huang B, Zhang Y. Progress and Clinical Application of Single-Cell Transcriptional Sequencing Technology in Cancer Research. Front Oncol 2020;10:593085. [PMID: 33614479 DOI: 10.3389/fonc.2020.593085] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
186 Liu WK, Song YQ, Ma Y, Li X, Chen P, Luo F, Li JH, Li Z, Yang L, Tan H, Zhou ZG. PEGylated Active Carbon Nanoparticles with Improved Dispersivity in Water and Potential Application in Lymphatic Targeted Therapy of Colorectal Cancer. JNanoR 2021;66:85-102. [DOI: 10.4028/www.scientific.net/jnanor.66.85] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
187 Salah A, Li Y, Wang H, Qi N, Wu Y. Macrophages as a Double-Edged Weapon: The Use of Macrophages in Cancer Immunotherapy and Understanding the Cross-Talk Between Macrophages and Cancer. DNA Cell Biol 2021;40:429-40. [PMID: 33481665 DOI: 10.1089/dna.2020.6087] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
188 Wei Z, Zhang X, Yong T, Bie N, Zhan G, Li X, Liang Q, Li J, Yu J, Huang G, Yan Y, Zhang Z, Zhang B, Gan L, Huang B, Yang X. Boosting anti-PD-1 therapy with metformin-loaded macrophage-derived microparticles. Nat Commun 2021;12:440. [PMID: 33469052 DOI: 10.1038/s41467-020-20723-x] [Cited by in Crossref: 54] [Cited by in F6Publishing: 60] [Article Influence: 27.0] [Reference Citation Analysis]
189 Li Z, Chen C, Wang J, Wei M, Liu G, Qin Y, She L, Liu Y, Huang D, Tian Y, Zhu G, Zhang X. Overexpressed PLAU and its potential prognostic value in head and neck squamous cell carcinoma. PeerJ 2021;9:e10746. [PMID: 33520474 DOI: 10.7717/peerj.10746] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
190 Qiu Q, Lin Y, Ma Y, Li X, Liang J, Chen Z, Liu K, Huang Y, Luo H, Huang R, Luo L. Exploring the Emerging Role of the Gut Microbiota and Tumor Microenvironment in Cancer Immunotherapy. Front Immunol 2020;11:612202. [PMID: 33488618 DOI: 10.3389/fimmu.2020.612202] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 12.0] [Reference Citation Analysis]
191 Soyama T, Sakuragi A, Oishi D, Kimura Y, Aoki H, Nomoto A, Yano S, Nishie H, Kataoka H, Aoyama M. Photodynamic therapy exploiting the anti-tumor activity of mannose-conjugated chlorin e6 reduced M2-like tumor-associated macrophages. Transl Oncol 2021;14:101005. [PMID: 33401079 DOI: 10.1016/j.tranon.2020.101005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
192 Zhou S, Huang YE, Liu H, Zhou X, Yuan M, Hou F, Wang L, Jiang W. Single-cell RNA-seq dissects the intratumoral heterogeneity of triple-negative breast cancer based on gene regulatory networks. Mol Ther Nucleic Acids 2021;23:682-90. [PMID: 33575114 DOI: 10.1016/j.omtn.2020.12.018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
193 Jarosz-biej M, Smolarczyk R, Cichoń T, Szala S. Reprogramming of Tumor Microenvironment in Therapy. Cancer Immunology 2021. [DOI: 10.1007/978-3-030-50287-4_22] [Reference Citation Analysis]
194 Arlauckas S, Oh N, Li R, Weissleder R, Miller MA. Macrophage imaging and subset analysis using single-cell RNA sequencing. Nanotheranostics 2021;5:36-56. [PMID: 33391974 DOI: 10.7150/ntno.50185] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
195 张 剑. Effect of Kupffer Cells in the Pathogenesis of Primary Liver Cancer. ACM 2021;11:1726-1732. [DOI: 10.12677/acm.2021.114248] [Reference Citation Analysis]
196 Ma K, Zhang L. Overview: Lipid Metabolism in the Tumor Microenvironment. Adv Exp Med Biol 2021;1316:41-7. [PMID: 33740242 DOI: 10.1007/978-981-33-6785-2_3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
197 Maurya BK, Pandey A, Trigun SK. Hyperglycolysis-Inflammation Connect as a Mechanistic Hot Spot in Oxidatively Compromised Cancer. Handbook of Oxidative Stress in Cancer: Mechanistic Aspects 2021. [DOI: 10.1007/978-981-15-4501-6_134-1] [Reference Citation Analysis]
198 Qiu N, Wang G, Wang J, Zhou Q, Guo M, Wang Y, Hu X, Zhou H, Bai R, You M, Zhang Z, Chen C, Liu Y, Shen Y. Tumor-Associated Macrophage and Tumor-Cell Dually Transfecting Polyplexes for Efficient Interleukin-12 Cancer Gene Therapy. Adv Mater 2021;33:e2006189. [PMID: 33270281 DOI: 10.1002/adma.202006189] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 15.0] [Reference Citation Analysis]
199 Yang M, Li J, Gu P, Fan X. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Bioact Mater 2021;6:1973-87. [PMID: 33426371 DOI: 10.1016/j.bioactmat.2020.12.010] [Cited by in Crossref: 159] [Cited by in F6Publishing: 173] [Article Influence: 53.0] [Reference Citation Analysis]
200 Zang X, Zhou J, Zhang X, Chen D, Han Y, Chen X. Dual-targeting tumor cells and tumor associated macrophages with lipid coated calcium zoledronate for enhanced lung cancer chemoimmunotherapy. Int J Pharm 2021;594:120174. [PMID: 33338567 DOI: 10.1016/j.ijpharm.2020.120174] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
201 Wang X, Gao S, Song L, Liu M, Sun Z, Liu J. Astragaloside IV antagonizes M2 phenotype macrophage polarization-evoked ovarian cancer cell malignant progression by suppressing the HMGB1-TLR4 axis. Mol Immunol 2021;130:113-21. [PMID: 33308900 DOI: 10.1016/j.molimm.2020.11.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
202 Li L, Huang S, Yao Y, Chen J, Li J, Xiang X, Deng J, Xiong J. Follistatin-like 1 (FSTL1) is a prognostic biomarker and correlated with immune cell infiltration in gastric cancer. World J Surg Oncol 2020;18:324. [PMID: 33292276 DOI: 10.1186/s12957-020-02070-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
203 Chen Y, Wang W, Jiang B, Yao L, Xia F, Li X. Integrating Tumor Stroma Biomarkers With Clinical Indicators for Colon Cancer Survival Stratification. Front Med (Lausanne) 2020;7:584747. [PMID: 33365318 DOI: 10.3389/fmed.2020.584747] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
204 Yuan H, Lin Z, Liu Y, Jiang Y, Liu K, Tu M, Yao N, Qu C, Hong J. Intrahepatic cholangiocarcinoma induced M2-polarized tumor-associated macrophages facilitate tumor growth and invasiveness. Cancer Cell Int 2020;20:586. [PMID: 33372604 DOI: 10.1186/s12935-020-01687-w] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
205 Pan Y, Yu Y, Wang X, Zhang T. Tumor-Associated Macrophages in Tumor Immunity. Front Immunol 2020;11:583084. [PMID: 33365025 DOI: 10.3389/fimmu.2020.583084] [Cited by in Crossref: 216] [Cited by in F6Publishing: 250] [Article Influence: 72.0] [Reference Citation Analysis]
206 Zhong L, Zhang Y, Li M, Song Y, Liu D, Yang X, Yang D, Qu H, Lai L, Wang Q, Chen Z. E3 ligase FBXW7 restricts M2-like tumor-associated macrophage polarization by targeting c-Myc. Aging (Albany NY) 2020;12:24394-423. [PMID: 33260160 DOI: 10.18632/aging.202293] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
207 Li Y, Xie J, Um W, You DG, Kwon S, Zhang L, Zhu J, Park JH. Sono/Photodynamic Nanomedicine‐Elicited Cancer Immunotherapy. Adv Funct Mater 2021;31:2008061. [DOI: 10.1002/adfm.202008061] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 8.3] [Reference Citation Analysis]
208 Li LN, Liu Y, Zhang HC, Wu T, Dai Y, Wang WH. Helicobacter pylori infection reduces TAMs infiltration in a mouse model of AOM/DSS induced colitis-associated cancer. PLoS One 2020;15:e0241840. [PMID: 33201893 DOI: 10.1371/journal.pone.0241840] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
209 Zhang P, Zhang Y, Wang L, Lou W. Tumor-regulated macrophage type 2 differentiation promotes immunosuppression in laryngeal squamous cell carcinoma. Life Sci 2021;267:118798. [PMID: 33220295 DOI: 10.1016/j.lfs.2020.118798] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
210 Chen Y, Jin H, Song Y, Huang T, Cao J, Tang Q, Zou Z. Targeting tumor-associated macrophages: A potential treatment for solid tumors. J Cell Physiol 2021;236:3445-65. [PMID: 33200401 DOI: 10.1002/jcp.30139] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
211 Alhudaithi SS, Almuqbil RM, Zhang H, Bielski ER, Du W, Sunbul FS, Bos PD, da Rocha SRP. Local Targeting of Lung-Tumor-Associated Macrophages with Pulmonary Delivery of a CSF-1R Inhibitor for the Treatment of Breast Cancer Lung Metastases. Mol Pharm 2020;17:4691-703. [PMID: 33170724 DOI: 10.1021/acs.molpharmaceut.0c00983] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
212 Yue S, Ye X, Zhou T, Gan D, Qian H, Fang W, Yao M, Zhang D, Shi H, Chen T. PGRN-/- TAMs-derived exosomes inhibit breast cancer cell invasion and migration and its mechanism exploration. Life Sci 2021;264:118687. [PMID: 33181174 DOI: 10.1016/j.lfs.2020.118687] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 6.7] [Reference Citation Analysis]
213 Liu SD, Zhong LP, He J, Zhao YX. Targeting neuropilin-1 interactions is a promising anti-tumor strategy. Chin Med J (Engl) 2020;134:508-17. [PMID: 33177389 DOI: 10.1097/CM9.0000000000001200] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
214 Matsuzaki S, Klar M, Matsuzaki S, Roman LD, Sood AK, Matsuo K. Uterine carcinosarcoma: Contemporary clinical summary, molecular updates, and future research opportunity. Gynecol Oncol 2021;160:586-601. [PMID: 33183764 DOI: 10.1016/j.ygyno.2020.10.043] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 9.0] [Reference Citation Analysis]
215 Liu Y, Wang R. Immunotherapy Targeting Tumor-Associated Macrophages. Front Med (Lausanne) 2020;7:583708. [PMID: 33251232 DOI: 10.3389/fmed.2020.583708] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
216 Bu F, Nie H, Zhu X, Wu T, Lin K, Zhao J, Huang J. A signature of 18 immune-related gene pairs to predict the prognosis of pancreatic cancer patients. Immun Inflamm Dis 2020;8:713-26. [PMID: 33128857 DOI: 10.1002/iid3.363] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
217 Zhao P, Zhang J, Wu A, Zhang M, Zhao Y, Tang Y, Wang B, Chen T, Li F, Zhao Q, Huang Y. Biomimetic codelivery overcomes osimertinib-resistant NSCLC and brain metastasis via macrophage-mediated innate immunity. J Control Release 2021;329:1249-61. [PMID: 33129919 DOI: 10.1016/j.jconrel.2020.10.052] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
218 Hou T, Wang T, Mu W, Yang R, Liang S, Zhang Z, Fu S, Gao T, Liu Y, Zhang N. Nanoparticle-Loaded Polarized-Macrophages for Enhanced Tumor Targeting and Cell-Chemotherapy. Nanomicro Lett 2020;13:6. [PMID: 34138195 DOI: 10.1007/s40820-020-00531-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
219 Zhao J, Liu H, Zhang X, Zhang W, Liu L, Yu Y, Ren S, Yang Q, Liu B, Li J, Li X, Liu Y, Zhao L. Tumor Cells Interleukin-22 Expression Associates with Elevated Tumor-Associated Macrophages Infiltrating and Poor Prognosis in Patients with Breast Cancer. Cancer Biother Radiopharm 2021;36:160-6. [PMID: 33090014 DOI: 10.1089/cbr.2020.3794] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
220 Baranyai Z, Soria‐carrera H, Alleva M, Millán‐placer AC, Lucía A, Martín‐rapún R, Aínsa JA, la Fuente JM. Nanotechnology‐Based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis. Adv Therap 2021;4:2000113. [DOI: 10.1002/adtp.202000113] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
221 Li K, Liu CJ, Zhang XZ. Multifunctional peptides for tumor therapy. Adv Drug Deliv Rev 2020;160:36-51. [PMID: 33080257 DOI: 10.1016/j.addr.2020.10.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
222 Shi J, Wang K, Xiong Z, Yuan C, Wang C, Cao Q, Yu H, Meng X, Xie K, Cheng Z, Yang H, Chen K, Zhang X. Impact of inflammation and immunotherapy in renal cell carcinoma. Oncol Lett 2020;20:272. [PMID: 33014151 DOI: 10.3892/ol.2020.12135] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
223 Wang M, Zhou B, Wang L, Zhou F, Smith N, Saunders D, Towner RA, Song J, Qu J, Chen WR. Biodegradable pH-responsive amorphous calcium carbonate nanoparticles as immunoadjuvants for multimodal imaging and enhanced photoimmunotherapy. J Mater Chem B 2020;8:8261-70. [PMID: 32812632 DOI: 10.1039/d0tb01453b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
224 Rushworth JL, Montgomery KS, Cao B, Brown R, Dibb NJ, Nilsson SK, Chiefari J, Fuchter MJ. Glycosylated Nanoparticles Derived from RAFT Polymerization for Effective Drug Delivery to Macrophages. ACS Appl Bio Mater 2020;3:5775-86. [PMID: 35021808 DOI: 10.1021/acsabm.0c00529] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
225 Kang K, Xie F, Mao J, Bai Y, Wang X. Significance of Tumor Mutation Burden in Immune Infiltration and Prognosis in Cutaneous Melanoma. Front Oncol 2020;10:573141. [PMID: 33072607 DOI: 10.3389/fonc.2020.573141] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 12.0] [Reference Citation Analysis]
226 Zhang X, Zang X, Qiao M, Zhao X, Hu H, Chen D. Targeted Delivery of Dasatinib to Deplete Tumor-Associated Macrophages by Mannosylated Mixed Micelles for Tumor Immunotherapy. ACS Biomater Sci Eng 2020;6:5675-84. [PMID: 33320562 DOI: 10.1021/acsbiomaterials.0c01046] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
227 Choi YS, Jang H, Gupta B, Jeong JH, Ge Y, Yong CS, Kim JO, Bae JS, Song IS, Kim IS, Lee YM. Tie2-mediated vascular remodeling by ferritin-based protein C nanoparticles confers antitumor and anti-metastatic activities. J Hematol Oncol 2020;13:123. [PMID: 32928251 DOI: 10.1186/s13045-020-00952-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
228 Czako B, Marszalek JR, Burke JP, Mandal P, Leonard PG, Cross JB, Mseeh F, Jiang Y, Chang EQ, Suzuki E, Kovacs JJ, Feng N, Gera S, Harris AL, Liu Z, Mullinax RA, Pang J, Parker CA, Spencer ND, Yu SS, Wu Q, Tremblay MR, Mikule K, Wilcoxen K, Heffernan TP, Draetta GF, Jones P. Discovery of IACS-9439, a Potent, Exquisitely Selective, and Orally Bioavailable Inhibitor of CSF1R. J Med Chem 2020;63:9888-911. [PMID: 32787110 DOI: 10.1021/acs.jmedchem.0c00936] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
229 Ning L, Wang L, Zhang H, Jiao X, Chen D. Eukaryotic translation initiation factor 5A in the pathogenesis of cancers. Oncol Lett 2020;20:81. [PMID: 32863914 DOI: 10.3892/ol.2020.11942] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
230 Theocharis S, Tasoulas J, Masaoutis C, Kokkali S, Klijanienko J. Salivary gland cancer in the era of immunotherapy: can we exploit tumor microenvironment? Expert Opin Ther Targets 2020;24:1047-59. [PMID: 32744127 DOI: 10.1080/14728222.2020.1804863] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
231 Zhukova OV, Kovaleva TF, Arkhipova EV, Ryabov SA, Mukhina IV. Tumor-associated macrophages: Role in the pathological process of tumorigenesis and prospective therapeutic use (Review). Biomed Rep 2020;13:47. [PMID: 32934819 DOI: 10.3892/br.2020.1354] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
232 Guo Y, Liu X, Xu D, Huang C, Wang Z, Xia X, Zhu C, Xu J, Zhang Z, Shen Y, Zhao W, Zhao G. Role of LATS1/2 in Prognosis of Advanced Gastric Cancer and Its Relationship With the Tumor Immune Microenvironment. Front Oncol 2020;10:1406. [PMID: 32983971 DOI: 10.3389/fonc.2020.01406] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
233 Agarbati S, Mascitti M, Paolucci E, Togni L, Santarelli A, Rubini C, Fazioli F. Prognostic Relevance of Macrophage Phenotypes in High-grade Oral Tongue Squamous Cell Carcinomas. Appl Immunohistochem Mol Morphol 2021;29:359-65. [PMID: 32842026 DOI: 10.1097/PAI.0000000000000867] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
234 Guo T, Yang Y, Gao M, Qu Y, Guo X, Liu Y, Cui X, Wang C. Lepidium meyenii Walpers polysaccharide and its cationic derivative re-educate tumor-associated macrophages for synergistic tumor immunotherapy. Carbohydr Polym 2020;250:116904. [PMID: 33049880 DOI: 10.1016/j.carbpol.2020.116904] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
235 Yang Y, Yang Y, Yang J, Zhao X, Wei X. Tumor Microenvironment in Ovarian Cancer: Function and Therapeutic Strategy. Front Cell Dev Biol 2020;8:758. [PMID: 32850861 DOI: 10.3389/fcell.2020.00758] [Cited by in Crossref: 57] [Cited by in F6Publishing: 57] [Article Influence: 19.0] [Reference Citation Analysis]
236 Kim K, Khang D. Past, Present, and Future of Anticancer Nanomedicine. Int J Nanomedicine 2020;15:5719-43. [PMID: 32821098 DOI: 10.2147/IJN.S254774] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
237 Puthenveetil A, Dubey S. Metabolic reprograming of tumor-associated macrophages. Ann Transl Med 2020;8:1030. [PMID: 32953830 DOI: 10.21037/atm-20-2037] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
238 Panni RZ, Herndon JM, Zuo C, Hegde S, Hogg GD, Knolhoff BL, Breden MA, Li X, Krisnawan VE, Khan SQ, Schwarz JK, Rogers BE, Fields RC, Hawkins WG, Gupta V, DeNardo DG. Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Sci Transl Med 2019;11:eaau9240. [PMID: 31270275 DOI: 10.1126/scitranslmed.aau9240] [Cited by in Crossref: 89] [Cited by in F6Publishing: 90] [Article Influence: 29.7] [Reference Citation Analysis]
239 Xiao H, Guo Y, Li B, Li X, Wang Y, Han S, Cheng D, Shuai X. M2-Like Tumor-Associated Macrophage-Targeted Codelivery of STAT6 Inhibitor and IKKβ siRNA Induces M2-to-M1 Repolarization for Cancer Immunotherapy with Low Immune Side Effects. ACS Cent Sci 2020;6:1208-22. [PMID: 32724855 DOI: 10.1021/acscentsci.9b01235] [Cited by in Crossref: 61] [Cited by in F6Publishing: 67] [Article Influence: 20.3] [Reference Citation Analysis]
240 Ma Y, Cai L. Next Generation of Cancer Immunotherapy: Targeting the Cancer-Immunity Cycle with Nanotechnology. In: Xu H, Gu N, editors. Nanotechnology in Regenerative Medicine and Drug Delivery Therapy. Singapore: Springer; 2020. pp. 191-253. [DOI: 10.1007/978-981-15-5386-8_4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
241 Xun Q, Wang Z, Hu X, Ding K, Lu X. Small-Molecule CSF1R Inhibitors as Anticancer Agents. Curr Med Chem 2020;27:3944-66. [PMID: 31215373 DOI: 10.2174/1573394715666190618121649] [Cited by in Crossref: 17] [Cited by in F6Publishing: 23] [Article Influence: 5.7] [Reference Citation Analysis]
242 Sylvestre M, Saxby CP, Kacherovsky N, Gustafson H, Salipante SJ, Pun SH. Identification of a DNA Aptamer That Binds to Human Monocytes and Macrophages. Bioconjug Chem 2020;31:1899-907. [PMID: 32589412 DOI: 10.1021/acs.bioconjchem.0c00247] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
243 Tang F, Xie W, Li S, Hu Q, Zheng B, Ke M, Huang J. Alginate-zinc (II) phthalocyanine conjugates: Synthesis, characterization and tumor-associated macrophages-targeted photodynamic therapy. Carbohydrate Polymers 2020;240:116239. [DOI: 10.1016/j.carbpol.2020.116239] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
244 Yang J, Wang C, Shi S, Dong C. Nanotechnologies for enhancing cancer immunotherapy. Nano Res 2020;13:2595-616. [DOI: 10.1007/s12274-020-2904-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
245 Wang L, Li YS, Yu LG, Zhang XK, Zhao L, Gong FL, Yang XX, Guo XL. Galectin-3 expression and secretion by tumor-associated macrophages in hypoxia promotes breast cancer progression. Biochem Pharmacol 2020;178:114113. [PMID: 32579956 DOI: 10.1016/j.bcp.2020.114113] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 5.7] [Reference Citation Analysis]
246 Li Y, Tao L, Cai W. Profiles of Immune Infiltration and Prognostic Immunoscore in Lung Adenocarcinoma. Biomed Res Int 2020;2020:5858092. [PMID: 32596334 DOI: 10.1155/2020/5858092] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
247 Peng L, Wang Y, Fei S, Wei C, Tong F, Wu G, Ma H, Dong X. The effect of combining Endostar with radiotherapy on blood vessels, tumor-associated macrophages, and T cells in brain metastases of Lewis lung cancer. Transl Lung Cancer Res 2020;9:745-60. [PMID: 32676336 DOI: 10.21037/tlcr-20-500] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
248 Lee JS, Yost SE, Yuan Y. Neoadjuvant Treatment for Triple Negative Breast Cancer: Recent Progresses and Challenges. Cancers (Basel) 2020;12:E1404. [PMID: 32486021 DOI: 10.3390/cancers12061404] [Cited by in Crossref: 40] [Cited by in F6Publishing: 45] [Article Influence: 13.3] [Reference Citation Analysis]
249 Chen C, Li A, Sun P, Xu J, Du W, Zhang J, Liu Y, Zhang R, Zhang S, Yang Z, Tang C, Jiang X. Efficiently restoring the tumoricidal immunity against resistant malignancies via an immune nanomodulator. J Control Release 2020;324:574-85. [PMID: 32473178 DOI: 10.1016/j.jconrel.2020.05.039] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
250 Ye J, Yang Y, Jin J, Ji M, Gao Y, Feng Y, Wang H, Chen X, Liu Y. Targeted delivery of chlorogenic acid by mannosylated liposomes to effectively promote the polarization of TAMs for the treatment of glioblastoma. Bioact Mater 2020;5:694-708. [PMID: 32478203 DOI: 10.1016/j.bioactmat.2020.05.001] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
251 Deng X, Liang H, Yang W, Shao Z. Polarization and function of tumor-associated macrophages mediate graphene oxide-induced photothermal cancer therapy. J Photochem Photobiol B 2020;208:111913. [PMID: 32473533 DOI: 10.1016/j.jphotobiol.2020.111913] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 11.7] [Reference Citation Analysis]
252 Chaib M, Chauhan SC, Makowski L. Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer. Front Cell Dev Biol 2020;8:351. [PMID: 32509781 DOI: 10.3389/fcell.2020.00351] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
253 Wang B, Zhang W, Zhou X, Liu M, Hou X, Cheng Z, Chen D. Development of dual-targeted nano-dandelion based on an oligomeric hyaluronic acid polymer targeting tumor-associated macrophages for combination therapy of non-small cell lung cancer. Drug Deliv 2019;26:1265-79. [PMID: 31777307 DOI: 10.1080/10717544.2019.1693707] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 8.7] [Reference Citation Analysis]
254 Wan D, Ma X, Lin C, Zhu D, Li X, Zheng B, Li J, Ke M, Huang J. Noncovalent Indocyanine Green Conjugate of C-Phycocyanin: Preparation and Tumor-Associated Macrophages-Targeted Photothermal Therapeutics. Bioconjugate Chem 2020;31:1438-48. [DOI: 10.1021/acs.bioconjchem.0c00139] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
255 Sylvestre M, Crane CA, Pun SH. Progress on Modulating Tumor-Associated Macrophages with Biomaterials. Adv Mater 2020;32:e1902007. [PMID: 31559665 DOI: 10.1002/adma.201902007] [Cited by in Crossref: 70] [Cited by in F6Publishing: 70] [Article Influence: 23.3] [Reference Citation Analysis]
256 Saclier M, Lapi M, Bonfanti C, Rossi G, Antonini S, Messina G. The Transcription Factor Nfix Requires RhoA-ROCK1 Dependent Phagocytosis to Mediate Macrophage Skewing during Skeletal Muscle Regeneration. Cells 2020;9:E708. [PMID: 32183151 DOI: 10.3390/cells9030708] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
257 Willemsen L, de Winther MP. Macrophage subsets in atherosclerosis as defined by single-cell technologies. J Pathol 2020;250:705-14. [PMID: 32003464 DOI: 10.1002/path.5392] [Cited by in Crossref: 67] [Cited by in F6Publishing: 71] [Article Influence: 22.3] [Reference Citation Analysis]
258 Yang H, Zhang Q, Xu M, Wang L, Chen X, Feng Y, Li Y, Zhang X, Cui W, Jia X. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis. Mol Cancer 2020;19:41. [PMID: 32103760 DOI: 10.1186/s12943-020-01165-x] [Cited by in Crossref: 101] [Cited by in F6Publishing: 112] [Article Influence: 33.7] [Reference Citation Analysis]
259 Singhal S, Stadanlick J, Annunziata MJ, Rao AS, Bhojnagarwala PS, O'Brien S, Moon EK, Cantu E, Danet-Desnoyers G, Ra HJ, Litzky L, Akimova T, Beier UH, Hancock WW, Albelda SM, Eruslanov EB. Human tumor-associated monocytes/macrophages and their regulation of T cell responses in early-stage lung cancer. Sci Transl Med 2019;11:eaat1500. [PMID: 30760579 DOI: 10.1126/scitranslmed.aat1500] [Cited by in Crossref: 110] [Cited by in F6Publishing: 114] [Article Influence: 36.7] [Reference Citation Analysis]
260 Chen J, Dou Y, Tang Y, Zhang X. Folate receptor-targeted RNAi nanoparticles for silencing STAT3 in tumor-associated macrophages and tumor cells. Nanomedicine 2020;25:102173. [PMID: 32084593 DOI: 10.1016/j.nano.2020.102173] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
261 Zhou L, Tian Y, Guo F, Yu B, Li J, Xu H, Su Z. LincRNA-p21 knockdown reversed tumor-associated macrophages function by promoting MDM2 to antagonize* p53 activation and alleviate breast cancer development. Cancer Immunol Immunother. 2020;69:835-846. [PMID: 32062693 DOI: 10.1007/s00262-020-02511-0] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
262 Zhang R, Liu Q, Peng J, Wang M, Li T, Liu J, Cui M, Zhang X, Gao X, Liao Q, Zhao Y. CXCL5 overexpression predicts a poor prognosis in pancreatic ductal adenocarcinoma and is correlated with immune cell infiltration. J Cancer 2020;11:2371-81. [PMID: 32201508 DOI: 10.7150/jca.40517] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
263 Chen SMY, Krinsky AL, Woolaver RA, Wang X, Chen Z, Wang JH. Tumor immune microenvironment in head and neck cancers. Mol Carcinog 2020;59:766-74. [PMID: 32017286 DOI: 10.1002/mc.23162] [Cited by in Crossref: 31] [Cited by in F6Publishing: 39] [Article Influence: 10.3] [Reference Citation Analysis]
264 Luo Y, Yang J, Yu J, Liu X, Yu C, Hu J, Shi H, Ma X. Long Non-coding RNAs: Emerging Roles in the Immunosuppressive Tumor Microenvironment. Front Oncol 2020;10:48. [PMID: 32083005 DOI: 10.3389/fonc.2020.00048] [Cited by in Crossref: 40] [Cited by in F6Publishing: 45] [Article Influence: 13.3] [Reference Citation Analysis]
265 Ma Z, Shuai Y, Gao X, Wen X, Ji J. Circular RNAs in the tumour microenvironment. Mol Cancer 2020;19:8. [PMID: 31937318 DOI: 10.1186/s12943-019-1113-0] [Cited by in Crossref: 39] [Cited by in F6Publishing: 44] [Article Influence: 13.0] [Reference Citation Analysis]
266 Gionfriddo G, Plastina P, Augimeri G, Catalano S, Giordano C, Barone I, Morelli C, Giordano F, Gelsomino L, Sisci D, Witkamp R, Andò S, van Norren K, Bonofiglio D. Modulating Tumor-Associated Macrophage Polarization by Synthetic and Natural PPARγ Ligands as a Potential Target in Breast Cancer. Cells 2020;9:E174. [PMID: 31936729 DOI: 10.3390/cells9010174] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 7.7] [Reference Citation Analysis]
267 Wei Q, Shen N, Yu H, Wang Y, Tang Z, Chen X. FXIIIa substrate peptide decorated BLZ945 nanoparticles for specifically remodeling tumor immunity. Biomater Sci 2020;8:5666-76. [DOI: 10.1039/d0bm00713g] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
268 An Y, Yang Q. MiR-21 modulates the polarization of macrophages and increases the effects of M2 macrophages on promoting the chemoresistance of ovarian cancer. Life Sci 2020;242:117162. [PMID: 31837336 DOI: 10.1016/j.lfs.2019.117162] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 9.3] [Reference Citation Analysis]
269 Zhang C, Adusei M, Baranovic A, Debenedetto M, Lauricella A, Martin SC, Newsom-stewart C, Schwartz J, Kurt RA. Analysis of macrophages and neutrophils infiltrating murine mammary carcinoma sites within hours of tumor delivery. Cellular Immunology 2019;346:103929. [DOI: 10.1016/j.cellimm.2019.103929] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
270 Rodell CB, Ahmed MS, Garris CS, Pittet MJ, Weissleder R. Development of Adamantane-Conjugated TLR7/8 Agonists for Supramolecular Delivery and Cancer Immunotherapy. Theranostics 2019;9:8426-36. [PMID: 31879528 DOI: 10.7150/thno.35434] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 9.5] [Reference Citation Analysis]
271 Jin Z, Shen C, Zhang H, Qi R, Guo Q, Liu R, Hua B, Shi Z. Chinese medicine Xiaoshui decoction inhibits malignant pleural effusion in mice and mediates tumor-associated macrophage polarization by activating autophagy. J Ethnopharmacol 2020;249:112412. [PMID: 31751649 DOI: 10.1016/j.jep.2019.112412] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
272 Sahu A, Kwon I, Tae G. Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia. Biomaterials 2020;228:119578. [PMID: 31678843 DOI: 10.1016/j.biomaterials.2019.119578] [Cited by in Crossref: 96] [Cited by in F6Publishing: 102] [Article Influence: 24.0] [Reference Citation Analysis]
273 Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 2019;26:78. [PMID: 31629410 DOI: 10.1186/s12929-019-0568-z] [Cited by in Crossref: 315] [Cited by in F6Publishing: 342] [Article Influence: 78.8] [Reference Citation Analysis]
274 Ding W, Tan Y, Qian Y, Xue W, Wang Y, Jiang P, Xu X. Clinicopathologic and prognostic significance of tumor-associated macrophages in patients with hepatocellular carcinoma: A meta-analysis. PLoS One 2019;14:e0223971. [PMID: 31618252 DOI: 10.1371/journal.pone.0223971] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
275 Stahl D, Gentles AJ, Thiele R, Gütgemann I. Prognostic profiling of the immune cell microenvironment in Ewing´s Sarcoma Family of Tumors. Oncoimmunology 2019;8:e1674113. [PMID: 31741777 DOI: 10.1080/2162402X.2019.1674113] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 7.3] [Reference Citation Analysis]
276 Proctor DT, Huang J, Lama S, Albakr A, Van Marle G, Sutherland GR. Tumor-associated macrophage infiltration in meningioma. Neurooncol Adv 2019;1:vdz018. [PMID: 32642654 DOI: 10.1093/noajnl/vdz018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
277 Goldberg MS. Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer 2019;19:587-602. [PMID: 31492927 DOI: 10.1038/s41568-019-0186-9] [Cited by in Crossref: 282] [Cited by in F6Publishing: 303] [Article Influence: 70.5] [Reference Citation Analysis]
278 Gustafson HH, Pun SH. Instructing macrophages to fight cancer. Nat Biomed Eng 2018;2:559-61. [PMID: 31015640 DOI: 10.1038/s41551-018-0276-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
279 Tian X, Shen H, Li Z, Wang T, Wang S. Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J Hematol Oncol 2019;12:84. [PMID: 31438991 DOI: 10.1186/s13045-019-0772-z] [Cited by in Crossref: 77] [Cited by in F6Publishing: 83] [Article Influence: 19.3] [Reference Citation Analysis]
280 Aizik G, Waiskopf N, Agbaria M, Ben-David-Naim M, Levi-Kalisman Y, Shahar A, Banin U, Golomb G. Liposomes of Quantum Dots Configured for Passive and Active Delivery to Tumor Tissue. Nano Lett 2019;19:5844-52. [PMID: 31424944 DOI: 10.1021/acs.nanolett.9b01027] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
281 Hu G, Guo M, Xu J, Wu F, Fan J, Huang Q, Yang G, Lv Z, Wang X, Jin Y. Nanoparticles Targeting Macrophages as Potential Clinical Therapeutic Agents Against Cancer and Inflammation. Front Immunol 2019;10:1998. [PMID: 31497026 DOI: 10.3389/fimmu.2019.01998] [Cited by in Crossref: 96] [Cited by in F6Publishing: 99] [Article Influence: 24.0] [Reference Citation Analysis]
282 Liu Y, Li X, Zhang Y, Wang H, Rong X, Peng J, He L, Peng Y. An miR-340-5p-macrophage feedback loop modulates the progression and tumor microenvironment of glioblastoma multiforme. Oncogene 2019;38:7399-415. [PMID: 31427735 DOI: 10.1038/s41388-019-0952-x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 8.5] [Reference Citation Analysis]
283 Aldawsari HM, Gorain B, Alhakamy NA, Md S. Role of therapeutic agents on repolarisation of tumour-associated macrophage to halt lung cancer progression. Journal of Drug Targeting 2020;28:166-75. [DOI: 10.1080/1061186x.2019.1648478] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
284 Wang L, Zheng G. Macrophages in leukemia microenvironment. Blood Science 2019;1:29-33. [DOI: 10.1097/bs9.0000000000000014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
285 Wang T, Zhang J, Hou T, Yin X, Zhang N. Selective targeting of tumor cells and tumor associated macrophages separately by twin-like core-shell nanoparticles for enhanced tumor-localized chemoimmunotherapy. Nanoscale 2019;11:13934-46. [PMID: 31305839 DOI: 10.1039/c9nr03374b] [Cited by in Crossref: 53] [Cited by in F6Publishing: 57] [Article Influence: 13.3] [Reference Citation Analysis]
286 Qin H, Yu H, Sheng J, Zhang D, Shen N, Liu L, Tang Z, Chen X. PI3Kgamma Inhibitor Attenuates Immunosuppressive Effect of Poly(l-Glutamic Acid)-Combretastatin A4 Conjugate in Metastatic Breast Cancer. Adv Sci (Weinh) 2019;6:1900327. [PMID: 31380170 DOI: 10.1002/advs.201900327] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 7.3] [Reference Citation Analysis]
287 Zhang B, Ye H, Ren X, Zheng S, Zhou Q, Chen C, Lin Q, Li G, Wei L, Fu Z, Zhang Y, Hu C, Li Z, Chen R. Macrophage-expressed CD51 promotes cancer stem cell properties via the TGF-β1/smad2/3 axis in pancreatic cancer. Cancer Lett 2019;459:204-15. [PMID: 31199988 DOI: 10.1016/j.canlet.2019.06.005] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
288 Liu X, Xu D, Huang C, Guo Y, Wang S, Zhu C, Xu J, Zhang Z, Shen Y, Zhao W, Zhao G. Regulatory T cells and M2 macrophages present diverse prognostic value in gastric cancer patients with different clinicopathologic characteristics and chemotherapy strategies. J Transl Med. 2019;17:192. [PMID: 31174544 DOI: 10.1186/s12967-019-1929-9] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
289 Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH, Diaz LA Jr. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol 2019;16:361-75. [PMID: 30886395 DOI: 10.1038/s41575-019-0126-x] [Cited by in Crossref: 582] [Cited by in F6Publishing: 589] [Article Influence: 145.5] [Reference Citation Analysis]
290 Young MJ, Hsu KC, Lin TE, Chang WC, Hung JJ. The role of ubiquitin-specific peptidases in cancer progression. J Biomed Sci 2019;26:42. [PMID: 31133011 DOI: 10.1186/s12929-019-0522-0] [Cited by in Crossref: 55] [Cited by in F6Publishing: 62] [Article Influence: 13.8] [Reference Citation Analysis]
291 Guo Z, Song J, Hao J, Zhao H, Du X, Li E, Kuang Y, Yang F, Wang W, Deng J, Wang Q. M2 macrophages promote NSCLC metastasis by upregulating CRYAB. Cell Death Dis 2019;10:377. [PMID: 31097690 DOI: 10.1038/s41419-019-1618-x] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 12.0] [Reference Citation Analysis]
292 Huang H, Li J, Hu W, Chen C, Luo H, Tang X, Zhou K, Zhong W, Li X. The serum level of CC chemokine ligand 18 correlates with the prognosis of non-small cell lung cancer. Int J Biol Markers 2019;34:156-62. [DOI: 10.1177/1724600819829758] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
293 Ye J, Yang Y, Dong W, Gao Y, Meng Y, Wang H, Li L, Jin J, Ji M, Xia X, Chen X, Jin Y, Liu Y. Drug-free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor-associated macrophages. Int J Nanomedicine 2019;14:3203-20. [PMID: 31118632 DOI: 10.2147/IJN.S207589] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 9.3] [Reference Citation Analysis]
294 Ovais M, Guo M, Chen C. Tailoring Nanomaterials for Targeting Tumor-Associated Macrophages. Adv Mater 2019;31:e1808303. [PMID: 30883982 DOI: 10.1002/adma.201808303] [Cited by in Crossref: 151] [Cited by in F6Publishing: 154] [Article Influence: 37.8] [Reference Citation Analysis]
295 Totten JD, Wongpinyochit T, Carrola J, Duarte IF, Seib FP. PEGylation-Dependent Metabolic Rewiring of Macrophages with Silk Fibroin Nanoparticles. ACS Appl Mater Interfaces 2019;11:14515-25. [PMID: 30977355 DOI: 10.1021/acsami.8b18716] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
296 Wang H, Tang Y, Fang Y, Zhang M, Wang H, He Z, Wang B, Xu Q, Huang Y. Reprogramming Tumor Immune Microenvironment (TIME) and Metabolism via Biomimetic Targeting Codelivery of Shikonin/JQ1. Nano Lett 2019;19:2935-44. [PMID: 30950276 DOI: 10.1021/acs.nanolett.9b00021] [Cited by in Crossref: 85] [Cited by in F6Publishing: 94] [Article Influence: 21.3] [Reference Citation Analysis]
297 Kitaeva KV, Prudnikov TS, Gomzikova MO, Kletukhina SK, James V, Rizvanov AA, Solovyeva VV. Analysis of the Interaction and Proliferative Activity of Adenocarcinoma, Peripheral Blood Mononuclear and Mesenchymal Stromal Cells after Co-Cultivation In Vitro. BioNanoSci 2019;9:502-9. [DOI: 10.1007/s12668-019-00625-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
298 Jing X, Peng J, Dou Y, Sun J, Ma C, Wang Q, Zhang L, Luo X, Kong B, Zhang Y, Wang L, Qu X. Macrophage ERα promoted invasion of endometrial cancer cell by mTOR/KIF5B-mediated epithelial to mesenchymal transition. Immunol Cell Biol 2019;97:563-76. [PMID: 30779215 DOI: 10.1111/imcb.12245] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 7.3] [Reference Citation Analysis]
299 Ren W, Xia Y, Chen S, Wu G, Bazer FW, Zhou B, Tan B, Zhu G, Deng J, Yin Y. Glutamine Metabolism in Macrophages: A Novel Target for Obesity/Type 2 Diabetes. Adv Nutr 2019;10:321-30. [PMID: 30753258 DOI: 10.1093/advances/nmy084] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 15.5] [Reference Citation Analysis]
300 Neamatallah T. Mitogen-Activated Protein Kinase Pathway: A Critical Regulator in Tumor-associated Macrophage Polarization. J Microsc Ultrastruct 2019;7:53-6. [PMID: 31293885 DOI: 10.4103/JMAU.JMAU_68_18] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
301 Mukaida N, Nosaka T, Nakamoto Y, Baba T. Lung Macrophages: Multifunctional Regulator Cells for Metastatic Cells. Int J Mol Sci 2018;20:E116. [PMID: 30597969 DOI: 10.3390/ijms20010116] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
302 Kim HY, Li R, Ng TSC, Courties G, Rodell CB, Prytyskach M, Kohler RH, Pittet MJ, Nahrendorf M, Weissleder R, Miller MA. Quantitative Imaging of Tumor-Associated Macrophages and Their Response to Therapy Using 64Cu-Labeled Macrin. ACS Nano 2018;12:12015-29. [PMID: 30508377 DOI: 10.1021/acsnano.8b04338] [Cited by in Crossref: 85] [Cited by in F6Publishing: 93] [Article Influence: 17.0] [Reference Citation Analysis]
303 Tian L, Yi X, Dong Z, Xu J, Liang C, Chao Y, Wang Y, Yang K, Liu Z. Calcium Bisphosphonate Nanoparticles with Chelator-Free Radiolabeling to Deplete Tumor-Associated Macrophages for Enhanced Cancer Radioisotope Therapy. ACS Nano 2018;12:11541-51. [PMID: 30359515 DOI: 10.1021/acsnano.8b06699] [Cited by in Crossref: 73] [Cited by in F6Publishing: 76] [Article Influence: 14.6] [Reference Citation Analysis]
304 Fernandes C, Suares D, Yergeri MC. Tumor Microenvironment Targeted Nanotherapy. Front Pharmacol 2018;9:1230. [PMID: 30429787 DOI: 10.3389/fphar.2018.01230] [Cited by in Crossref: 80] [Cited by in F6Publishing: 85] [Article Influence: 16.0] [Reference Citation Analysis]
305 Mendes M, Sousa JJ, Pais A, Vitorino C. Targeted Theranostic Nanoparticles for Brain Tumor Treatment. Pharmaceutics 2018;10:E181. [PMID: 30304861 DOI: 10.3390/pharmaceutics10040181] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 12.2] [Reference Citation Analysis]
306 Zhou Z, Peng Y, Wu X, Meng S, Yu W, Zhao J, Zhang H, Wang J, Li W. CCL18 secreted from M2 macrophages promotes migration and invasion via the PI3K/Akt pathway in gallbladder cancer. Cell Oncol (Dordr) 2019;42:81-92. [PMID: 30276551 DOI: 10.1007/s13402-018-0410-8] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
307 Wang H, Mooney DJ. Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nature Mater 2018;17:761-72. [DOI: 10.1038/s41563-018-0147-9] [Cited by in Crossref: 245] [Cited by in F6Publishing: 255] [Article Influence: 49.0] [Reference Citation Analysis]
308 Seshadri DR, Ramamurthi A. Nanotherapeutics to Modulate the Compromised Micro-Environment for Lung Cancers and Chronic Obstructive Pulmonary Disease. Front Pharmacol 2018;9:759. [PMID: 30061830 DOI: 10.3389/fphar.2018.00759] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
309 Jin H, Wan C, Zou Z, Zhao G, Zhang L, Geng Y, Chen T, Huang A, Jiang F, Feng JP, Lovell JF, Chen J, Wu G, Yang K. Tumor Ablation and Therapeutic Immunity Induction by an Injectable Peptide Hydrogel. ACS Nano 2018;12:3295-310. [PMID: 29558107 DOI: 10.1021/acsnano.7b08148] [Cited by in Crossref: 99] [Cited by in F6Publishing: 109] [Article Influence: 19.8] [Reference Citation Analysis]
310 Ngambenjawong C, Sylvestre M, Gustafson HH, Pineda JMB, Pun SH. Reversibly Switchable, pH-Dependent Peptide Ligand Binding via 3,5-Diiodotyrosine Substitutions. ACS Chem Biol 2018;13:995-1002. [PMID: 29481044 DOI: 10.1021/acschembio.8b00171] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
311 Rebelo SP, Pinto C, Martins TR, Harrer N, Estrada MF, Loza-Alvarez P, Cabeçadas J, Alves PM, Gualda EJ, Sommergruber W, Brito C. 3D-3-culture: A tool to unveil macrophage plasticity in the tumour microenvironment. Biomaterials 2018;163:185-97. [PMID: 29477032 DOI: 10.1016/j.biomaterials.2018.02.030] [Cited by in Crossref: 110] [Cited by in F6Publishing: 118] [Article Influence: 22.0] [Reference Citation Analysis]
312 Jarosz-Biej M, Kamińska N, Matuszczak S, Cichoń T, Pamuła-Piłat J, Czapla J, Smolarczyk R, Skwarzyńska D, Kulik K, Szala S. M1-like macrophages change tumor blood vessels and microenvironment in murine melanoma. PLoS One 2018;13:e0191012. [PMID: 29320562 DOI: 10.1371/journal.pone.0191012] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 11.0] [Reference Citation Analysis]
313 Binnemars‐postma K, Bansal R, Storm G, Prakash J. Targeting the Stat6 pathway in tumor‐associated macrophages reduces tumor growth and metastatic niche formation in breast cancer. FASEB j 2018;32:969-78. [DOI: 10.1096/fj.201700629r] [Cited by in Crossref: 91] [Cited by in F6Publishing: 99] [Article Influence: 18.2] [Reference Citation Analysis]
314 Motoshima T, Miura Y, Wakigami N, Kusada N, Takano T, Inoshita N, Okaneya T, Sugiyama Y, Kamba T, Takeya M, Komohara Y. Phenotypical change of tumor-associated macrophages in metastatic lesions of clear cell renal cell carcinoma. Med Mol Morphol 2018;51:57-63. [PMID: 29218457 DOI: 10.1007/s00795-017-0174-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
315 Schupp J, Krebs FK, Zimmer N, Trzeciak E, Schuppan D, Tuettenberg A. Targeting myeloid cells in the tumor sustaining microenvironment. Cell Immunol 2019;343:103713. [PMID: 29129292 DOI: 10.1016/j.cellimm.2017.10.013] [Cited by in Crossref: 56] [Cited by in F6Publishing: 67] [Article Influence: 9.3] [Reference Citation Analysis]
316 Majety M, Runza V, Lehmann C, Hoves S, Ries CH. A drug development perspective on targeting tumor-associated myeloid cells. FEBS J 2018;285:763-76. [PMID: 28941174 DOI: 10.1111/febs.14277] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
317 Chen Y, Zhang X. Pivotal regulators of tissue homeostasis and cancer: macrophages. Exp Hematol Oncol 2017;6:23. [PMID: 28804688 DOI: 10.1186/s40164-017-0083-4] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 3.5] [Reference Citation Analysis]
318 Ngambenjawong C, Pun SH. Multivalent polymers displaying M2 macrophage-targeting peptides improve target binding avidity and serum stability. ACS Biomater Sci Eng 2017;3:2050-3. [PMID: 29430522 DOI: 10.1021/acsbiomaterials.7b00332] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
319 Karlsson MC, Gonzalez SF, Welin J, Fuxe J. Epithelial-mesenchymal transition in cancer metastasis through the lymphatic system. Mol Oncol 2017;11:781-91. [PMID: 28590032 DOI: 10.1002/1878-0261.12092] [Cited by in Crossref: 75] [Cited by in F6Publishing: 81] [Article Influence: 12.5] [Reference Citation Analysis]
320 Singh A, Roy K. Immuno-engineering: The Next Frontier in Therapeutics Delivery. Adv Drug Deliv Rev 2017;114:1-2. [PMID: 28865770 DOI: 10.1016/j.addr.2017.08.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]