1 |
Du J, Su Z, Yu H, Qin S, Wang D. From design to clinic: Engineered peptide nanomaterials for cancer immunotherapy. Front Chem 2023;10. [DOI: 10.3389/fchem.2022.1107600] [Reference Citation Analysis]
|
2 |
Bassan GA, Marchesan S. Peptide-Based Materials That Exploit Metal Coordination. Int J Mol Sci 2022;24. [PMID: 36613898 DOI: 10.3390/ijms24010456] [Reference Citation Analysis]
|
3 |
Files MA, Kristjansson KM, Rudra JS, Endsley JJ. Nanomaterials-based vaccines to target intracellular bacterial pathogens. Front Microbiol 2022;13:1040105. [PMID: 36466676 DOI: 10.3389/fmicb.2022.1040105] [Reference Citation Analysis]
|
4 |
García-machorro J, Ramírez-salinas GL, Martinez-archundia M, Correa-basurto J. The Advantage of Using Immunoinformatic Tools on Vaccine Design and Development for Coronavirus. Vaccines 2022;10:1844. [DOI: 10.3390/vaccines10111844] [Reference Citation Analysis]
|
5 |
Morales CG, Jimenez NR, Herbst-Kralovetz MM, Lee NR. Novel Vaccine Strategies and Factors to Consider in Addressing Health Disparities of HPV Infection and Cervical Cancer Development among Native American Women. Med Sci (Basel) 2022;10. [PMID: 36135837 DOI: 10.3390/medsci10030052] [Reference Citation Analysis]
|
6 |
Shrimali PC, Chen S, Dreher R, Howard MK, Buck J, Kim D, Rudra JS, Jackrel ME. Amyloidogenic Propensity of Self-Assembling Peptides and their Adjuvant Potential for use as DNA Vaccines.. [DOI: 10.1101/2022.09.09.507367] [Reference Citation Analysis]
|
7 |
Alharbi N, Skwarczynski M, Toth I. The influence of component structural arrangement on peptide vaccine immunogenicity. Biotechnol Adv 2022;60:108029. [PMID: 36028180 DOI: 10.1016/j.biotechadv.2022.108029] [Reference Citation Analysis]
|
8 |
Fu D, Wang M, Yang T, Li M, Liang Z, Chen C, Zhang L, Xue C, Sun B, Mao C. Self-assembled flagella protein nanofibers induce enhanced mucosal immunity. Biomaterials 2022;:121733. [PMID: 36038418 DOI: 10.1016/j.biomaterials.2022.121733] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
9 |
Feng C, Li Y, Ferdows BE, Patel DN, Ouyang J, Tang Z, Kong N, Chen E, Tao W. Emerging vaccine nanotechnology: From defense against infection to sniping cancer. Acta Pharm Sin B 2022;12:2206-23. [PMID: 35013704 DOI: 10.1016/j.apsb.2021.12.021] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
|
10 |
Côté-Cyr M, Zottig X, Gauthier L, Archambault D, Bourgault S. Self-Assembly of Flagellin into Immunostimulatory Ring-like Nanostructures as an Antigen Delivery System. ACS Biomater Sci Eng 2022. [PMID: 35080372 DOI: 10.1021/acsbiomaterials.1c01332] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
11 |
Ghosh U, Ghosh G. Supramolecular Self-Assembled Peptide-Based Nanostructures and Their Applications in Biomedicine. Pharmaceutical Applications of Supramolecules 2022. [DOI: 10.1007/978-3-031-21900-9_10] [Reference Citation Analysis]
|
12 |
Chavarria V, Figueroa R, Salazar A, Pérez de la Cruz V, Pineda B. Cancer vaccine’s multiverse and the future ahead. System Vaccinology 2022. [DOI: 10.1016/b978-0-323-85941-7.00010-3] [Reference Citation Analysis]
|
13 |
Qazi TH, Duda GN. Special Issue: Immunomodulatory Biomaterials. Acta Biomater 2021;133:1-3. [PMID: 34610878 DOI: 10.1016/j.actbio.2021.09.019] [Reference Citation Analysis]
|
14 |
Rozhin P, Charitidis C, Marchesan S. Self-Assembling Peptides and Carbon Nanomaterials Join Forces for Innovative Biomedical Applications. Molecules 2021;26:4084. [PMID: 34279424 DOI: 10.3390/molecules26134084] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
|