BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wubneh A, Tsekoura EK, Ayranci C, Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater 2018;80:1-30. [PMID: 30248515 DOI: 10.1016/j.actbio.2018.09.031] [Cited by in Crossref: 186] [Cited by in F6Publishing: 153] [Article Influence: 46.5] [Reference Citation Analysis]
Number Citing Articles
1 Lim HK, Hong SJ, Byeon SJ, Chung SM, On SW, Yang BE, Lee JH, Byun SH. 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures. Int J Mol Sci 2020;21:E6942. [PMID: 32971749 DOI: 10.3390/ijms21186942] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
2 Hesaraki S, Nouri-felekori M, Nezafati N, Borhan S. Preparation, characterization, and in vitro biological performance of novel porous GPTMS-coupled tragacanth/nano-bioactive glass bone tissue scaffolds. Materials Today Communications 2021;27:102335. [DOI: 10.1016/j.mtcomm.2021.102335] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Yang Z, Wang C, Gao H, Jia L, Zeng H, Zheng L, Wang C, Zhang H, Wang L, Song J, Fan Y. Biomechanical Effects of 3D-Printed Bioceramic Scaffolds With Porous Gradient Structures on the Regeneration of Alveolar Bone Defect: A Comprehensive Study. Front Bioeng Biotechnol 2022;10:882631. [DOI: 10.3389/fbioe.2022.882631] [Reference Citation Analysis]
4 Evdokimov PV, Putlayev VI, Orlov NK, Tikhonov AA, Tikhonova SA, Garshev AV, Milkin PA, Klimashina ES, Zuev DM, Filippov YY, Safronova TV. Adaptable Metamaterials Based on Biodegradable Composites for Bone Tissue Regeneration. Inorg Mater Appl Res 2021;12:404-15. [DOI: 10.1134/s2075113321020143] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 He F, Lu T, Feng S, Wang Y, Huang C, Zhang Y, Deng X, Ye J. Alliance of gallium and strontium potently mediates the osteoclastic and osteogenic activities of β-tricalcium phosphate bioceramic scaffolds. Chemical Engineering Journal 2021;412:128709. [DOI: 10.1016/j.cej.2021.128709] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
6 Fu R, Liu C, Yan Y, Li Q, Huang RL. Bone defect reconstruction via endochondral ossification: A developmental engineering strategy. J Tissue Eng 2021;12:20417314211004211. [PMID: 33868628 DOI: 10.1177/20417314211004211] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Ou L, Lan Y, Feng Z, Feng L, Yang J, Liu Y, Bian L, Tan J, Lai R, Guo R. Functionalization of SF/HAP Scaffold with GO-PEI-miRNA inhibitor Complexes to Enhance Bone Regeneration through Activating Transcription Factor 4. Theranostics 2019;9:4525-41. [PMID: 31285777 DOI: 10.7150/thno.34676] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
8 Zhao H, Han Y, Pan C, Yang D, Wang H, Wang T, Zeng X, Su P. Design and Mechanical Properties Verification of Gradient Voronoi Scaffold for Bone Tissue Engineering. Micromachines (Basel) 2021;12:664. [PMID: 34198927 DOI: 10.3390/mi12060664] [Reference Citation Analysis]
9 Wang R, Shi M, Xu F, Qiu Y, Zhang P, Shen K, Zhao Q, Yu J, Zhang Y. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection. Nat Commun 2020;11:4465. [PMID: 32901012 DOI: 10.1038/s41467-020-18267-1] [Cited by in Crossref: 40] [Cited by in F6Publishing: 19] [Article Influence: 20.0] [Reference Citation Analysis]
10 Dubey S, Mishra R, Roy P, Singh RP. 3-D macro/microporous-nanofibrous bacterial cellulose scaffolds seeded with BMP-2 preconditioned mesenchymal stem cells exhibit remarkable potential for bone tissue engineering. Int J Biol Macromol 2021;167:934-46. [PMID: 33189758 DOI: 10.1016/j.ijbiomac.2020.11.049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
11 Wu H, Wei X, Liu Y, Dong H, Tang Z, Wang N, Bao S, Wu Z, Shi L, Zheng X, Li X, Guo Z. Dynamic degradation patterns of porous polycaprolactone/β-tricalcium phosphate composites orchestrate macrophage responses and immunoregulatory bone regeneration. Bioactive Materials 2022. [DOI: 10.1016/j.bioactmat.2022.07.032] [Reference Citation Analysis]
12 Di Filippo MF, Amadori S, Casolari S, Bigi A, Dolci LS, Panzavolta S. Cylindrical Layered Bone Scaffolds with Anisotropic Mechanical Properties as Potential Drug Delivery Systems. Molecules 2019;24:E1931. [PMID: 31109143 DOI: 10.3390/molecules24101931] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
13 Zhao D, Jiang W, Wang Y, Wang C, Zhang X, Li Q, Han D. Three-Dimensional-Printed Poly-L-Lactic Acid Scaffolds with Different Pore Sizes Influence Periosteal Distraction Osteogenesis of a Rabbit Skull. Biomed Res Int 2020;2020:7381391. [PMID: 32382570 DOI: 10.1155/2020/7381391] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
14 Donate R, Monzón M, Alemán-domínguez ME. Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties. e-Polymers 2020;20:571-99. [DOI: 10.1515/epoly-2020-0046] [Cited by in Crossref: 10] [Article Influence: 5.0] [Reference Citation Analysis]
15 Babilotte J, Martin B, Guduric V, Bareille R, Agniel R, Roques S, Héroguez V, Dussauze M, Gaudon M, Le Nihouannen D, Catros S. Development and characterization of a PLGA-HA composite material to fabricate 3D-printed scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 2021;118:111334. [PMID: 33254966 DOI: 10.1016/j.msec.2020.111334] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
16 Sun Z, Wu F, Gao H, Cui K, Xian M, Zhong J, Tian Y, Fan S, Wu G. A Dexamethasone-Eluting Porous Scaffold for Bone Regeneration Fabricated by Selective Laser Sintering. ACS Appl Bio Mater 2020;3:8739-47. [DOI: 10.1021/acsabm.0c01126] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
17 Li J, Cao F, Wu B, Yang J, Xu W, Wang W, Wei X, Liu G, Zhao D. Immobilization of bioactive vascular endothelial growth factor onto Ca-deficient hydroxyapatite-coated Mg by covalent bonding using polydopamine. J Orthop Translat 2021;30:82-92. [PMID: 34660198 DOI: 10.1016/j.jot.2021.06.002] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Ma W, Zhan Y, Zhang Y, Mao C, Xie X, Lin Y. The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct Target Ther 2021;6:351. [PMID: 34620843 DOI: 10.1038/s41392-021-00727-9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 16.0] [Reference Citation Analysis]
19 Wan Q, Qin W, Shen M, Ma Y, Li B, Liu S, Tay FR, Jiao K, Niu L. Simultaneous Regeneration of Bone and Nerves Through Materials and Architectural Design: Are We There Yet? Adv Funct Mater 2020;30:2003542. [DOI: 10.1002/adfm.202003542] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
20 Li F, Liu Y, Xu Y, Li Y, Liu J, Lv M, Ruan C, Pan H, Zhao X. Ratiometric Fluorescent Microgels for Sensing Extracellular Microenvironment pH during Biomaterial Degradation. ACS Omega 2020;5:19796-804. [PMID: 32803075 DOI: 10.1021/acsomega.0c02621] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Chen Y, Huang J, Liu J, Wei Y, Yang X, Lei L, Chen L, Wu Y, Gou Z. Tuning filament composition and microstructure of 3D-printed bioceramic scaffolds facilitate bone defect regeneration and repair. Regen Biomater 2021;8:rbab007. [PMID: 33738121 DOI: 10.1093/rb/rbab007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Calore A, Hadavi D, Honing M, Albillos-Sanchez A, Mota C, Bernaerts K, Harings J, Moroni L. CHOLECALCIFEROL AS BIOACTIVE PLASTICIZER OF HIGH Mw PDLLA SCAFFOLDS FOR BONE REGENERATION. Tissue Eng Part C Methods 2022. [PMID: 35323028 DOI: 10.1089/ten.TEC.2022.0041] [Reference Citation Analysis]
23 Liu M, Li Z, Li F, Jin Q, Yang X, Xia C. Mechanical properties and in vitro biodegradation behavior of GASAR porous Mg-Ag alloy. Materials Letters 2022;315:131920. [DOI: 10.1016/j.matlet.2022.131920] [Reference Citation Analysis]
24 Hu D, Ren Q, Li Z, Zhang L. Chitosan-Based Biomimetically Mineralized Composite Materials in Human Hard Tissue Repair. Molecules 2020;25:E4785. [PMID: 33086470 DOI: 10.3390/molecules25204785] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Wang J, Chen J, Ran Y, He Q, Jiang T, Li W, Yu X. Utility of Air Bladder-Derived Nanostructured ECM for Tissue Regeneration. Front Bioeng Biotechnol 2020;8:553529. [PMID: 33178669 DOI: 10.3389/fbioe.2020.553529] [Reference Citation Analysis]
26 Cheng K, Zhu W, Weng X, Zhang L, Liu Y, Han C, Xia W. Injectable tricalcium phosphate/calcium sulfate granule enhances bone repair by reversible setting reaction. Biochem Biophys Res Commun 2021;557:151-8. [PMID: 33865223 DOI: 10.1016/j.bbrc.2021.03.145] [Reference Citation Analysis]
27 Lei L, Wei Y, Wang Z, Han J, Sun J, Chen Y, Yang X, Wu Y, Chen L, Gou Z. Core–Shell Bioactive Ceramic Robocasting: Tuning Component Distribution Beneficial for Highly Efficient Alveolar Bone Regeneration and Repair. ACS Biomater Sci Eng 2020;6:2376-87. [DOI: 10.1021/acsbiomaterials.0c00152] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
28 Rosales-ibáñez R, Viera-ruiz AE, Cauich-rodríguez JV, Carrillo-escalante HJ, González-gonzález A, Rodríguez-martínez JJ, Hernández-sánchez F. Electrospun/3D-printed PCL bioactive scaffold for bone regeneration. Polym Bull . [DOI: 10.1007/s00289-022-04149-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Power RN, Cavanagh BL, Dixon JE, Curtin CM, O'Brien FJ. Development of a Gene-Activated Scaffold Incorporating Multifunctional Cell-Penetrating Peptides for pSDF-1α Delivery for Enhanced Angiogenesis in Tissue Engineering Applications. Int J Mol Sci 2022;23:1460. [PMID: 35163379 DOI: 10.3390/ijms23031460] [Reference Citation Analysis]
30 Li R, Sun Y, Cai Z, Li Y, Sun J, Bi W, Yang F, Zhou Q, Ye T, Yu Y. Highly bioactive peptide-HA photo-crosslinking hydrogel for sustained promoting bone regeneration. Chemical Engineering Journal 2021;415:129015. [DOI: 10.1016/j.cej.2021.129015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
31 Backes EH, Fernandes EM, Diogo GS, Marques CF, Silva TH, Costa LC, Passador FR, Reis RL, Pessan LA. Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration. Mater Sci Eng C Mater Biol Appl 2021;122:111928. [PMID: 33641921 DOI: 10.1016/j.msec.2021.111928] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
32 Wang S, Shi Z, Liu L, Zhou X, Zhu L, Hao Y. The design of Ti6Al4V Primitive surface structure with symmetrical gradient of pore size in biomimetic bone scaffold. Materials & Design 2020;193:108830. [DOI: 10.1016/j.matdes.2020.108830] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 9.5] [Reference Citation Analysis]
33 Karimi-Soflou R, Mohseni-Vadeghani E, Karkhaneh A. Controlled release of resveratrol from a composite nanofibrous scaffold: Effect of resveratrol on antioxidant activity and osteogenic differentiation. J Biomed Mater Res A 2021. [PMID: 34228402 DOI: 10.1002/jbm.a.37262] [Reference Citation Analysis]
34 Zou S, Gong H, Gao J. Additively Manufactured Multilevel Voronoi-Lattice Scaffolds with Bonelike Mechanical Properties. ACS Biomater Sci Eng 2022. [PMID: 35537212 DOI: 10.1021/acsbiomaterials.1c01482] [Reference Citation Analysis]
35 Fan C, Zhan S, Dong Z, Yang W, Deng W, Liu X, Wang D, Sun P. Cross-linked gelatin microsphere-based scaffolds as a delivery vehicle of MC3T3-E1 cells: in vitro and in vivo evaluation. Materials Science and Engineering: C 2020;108:110399. [DOI: 10.1016/j.msec.2019.110399] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
36 Deng Z, Liu D, Xiong Y, Zhu X, Li S, Liu J, Chen T. Preparation of a hydroxyapatite–silver gradient bioactive ceramic coating with porous structure by laser cladding: A study of in vitro bioactivity. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.06.327] [Reference Citation Analysis]
37 Qu H. Additive manufacturing for bone tissue engineering scaffolds. Materials Today Communications 2020;24:101024. [DOI: 10.1016/j.mtcomm.2020.101024] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 10.5] [Reference Citation Analysis]
38 Pishavar E, Luo H, Naserifar M, Hashemi M, Toosi S, Atala A, Ramakrishna S, Behravan J. Advanced Hydrogels as Exosome Delivery Systems for Osteogenic Differentiation of MSCs: Application in Bone Regeneration. Int J Mol Sci 2021;22:6203. [PMID: 34201385 DOI: 10.3390/ijms22126203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Dziaduszewska M, Zieliński A. Structural and Material Determinants Influencing the Behavior of Porous Ti and Its Alloys Made by Additive Manufacturing Techniques for Biomedical Applications. Materials (Basel) 2021;14:712. [PMID: 33546358 DOI: 10.3390/ma14040712] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
40 Kamboj N, Ressler A, Hussainova I. Bioactive Ceramic Scaffolds for Bone Tissue Engineering by Powder Bed Selective Laser Processing: A Review. Materials (Basel) 2021;14:5338. [PMID: 34576562 DOI: 10.3390/ma14185338] [Reference Citation Analysis]
41 Kim JW, Yang BE, Hong SJ, Choi HG, Byeon SJ, Lim HK, Chung SM, Lee JH, Byun SH. Bone Regeneration Capability of 3D Printed Ceramic Scaffolds. Int J Mol Sci 2020;21:E4837. [PMID: 32650589 DOI: 10.3390/ijms21144837] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
42 Pedrero SG, Llamas-Sillero P, Serrano-López J. A Multidisciplinary Journey towards Bone Tissue Engineering. Materials (Basel) 2021;14:4896. [PMID: 34500986 DOI: 10.3390/ma14174896] [Reference Citation Analysis]
43 Edelmers E, Kazoka D, Pilmane M. Creation of Anatomically Correct and Optimized for 3D Printing Human Bones Models. ASI 2021;4:67. [DOI: 10.3390/asi4030067] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Petretta M, Gambardella A, Desando G, Cavallo C, Bartolotti I, Shelyakova T, Goranov V, Brucale M, Dediu VA, Fini M, Grigolo B. Multifunctional 3D-Printed Magnetic Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2021;13:3825. [PMID: 34771382 DOI: 10.3390/polym13213825] [Reference Citation Analysis]
45 Maleki H, Shahbazi M, Montes S, Hosseini SH, Eskandari MR, Zaunschirm S, Verwanger T, Mathur S, Milow B, Krammer B, Hüsing N. Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration. ACS Appl Mater Interfaces 2019;11:17256-69. [DOI: 10.1021/acsami.9b04283] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 13.0] [Reference Citation Analysis]
46 Wubneh A, Ayranci C, Kim C. A Novel Theoretical Model Development and Simulation of Melt‐Electrospinning Using Kane's and Udwadia–Kalaba Methods. Advcd Theory and Sims 2022;5:2100278. [DOI: 10.1002/adts.202100278] [Reference Citation Analysis]
47 Tian X, Yuan X, Feng D, Wu M, Yuan Y, Ma C, Xie D, Guo J, Liu C, Lu Z. In vivo study of polyurethane and tannin-modified hydroxyapatite composites for calvarial regeneration. J Tissue Eng 2020;11:2041731420968030. [PMID: 33282174 DOI: 10.1177/2041731420968030] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
48 Meng Z, He J, Cai Z, Zhang M, Zhang J, Ling R, Li D. In-situ re-melting and re-solidification treatment of selective laser sintered polycaprolactone lattice scaffolds for improved filament quality and mechanical properties. Biofabrication 2020;12:035012. [PMID: 32240988 DOI: 10.1088/1758-5090/ab860e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
49 Santos German IJ, Pomini KT, Bighetti ACC, Andreo JC, Reis CHB, Shinohara AL, Rosa Júnior GM, Teixeira DB, Rosso MPO, Buchaim DV, Buchaim RL. Evaluation of the Use of an Inorganic Bone Matrix in the Repair of Bone Defects in Rats Submitted to Experimental Alcoholism. Materials (Basel) 2020;13:E695. [PMID: 32033088 DOI: 10.3390/ma13030695] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Zhang A, Chen H, Liu Y, Wu N, Chen B, Zhao X, Han Q, Wang J. Customized reconstructive prosthesis design based on topological optimization to treat severe proximal tibia defect. Bio-des Manuf 2021;4:87-99. [DOI: 10.1007/s42242-020-00102-7] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
51 Luo K, Wang L, Tang J, Zeng X, Chen X, Zhang P, Zhou S, Li J, Zuo Y. Enhanced biomineralization of shape memory composite scaffolds from citrate functionalized amorphous calcium phosphate for bone repair. J Mater Chem B 2021;9:9191-203. [PMID: 34698324 DOI: 10.1039/d1tb01554k] [Reference Citation Analysis]
52 Goswami M, Rekhi P, Debnath M, Ramakrishna S. Microbial Polyhydroxyalkanoates Granules: An Approach Targeting Biopolymer for Medical Applications and Developing Bone Scaffolds. Molecules 2021;26:860. [PMID: 33562111 DOI: 10.3390/molecules26040860] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
53 Puppi D, Chiellini F. Biodegradable Polymers for Biomedical Additive Manufacturing. Applied Materials Today 2020;20:100700. [DOI: 10.1016/j.apmt.2020.100700] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 8.5] [Reference Citation Analysis]
54 Curto H, Thuault A, Jean F, Violier M, Dupont V, Hornez J, Leriche A. Coupling additive manufacturing and microwave sintering: A fast processing route of alumina ceramics. Journal of the European Ceramic Society 2020;40:2548-54. [DOI: 10.1016/j.jeurceramsoc.2019.11.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 8.5] [Reference Citation Analysis]
55 Lozinsky VI. Cryostructuring of Polymeric Systems. 55. Retrospective View on the More than 40 Years of Studies Performed in the A.N.Nesmeyanov Institute of Organoelement Compounds with Respect of the Cryostructuring Processes in Polymeric Systems. Gels 2020;6:E29. [PMID: 32927850 DOI: 10.3390/gels6030029] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
56 Dejob L, Toury B, Tadier S, Grémillard L, Gaillard C, Salles V. Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review. Acta Biomater 2021;123:123-53. [PMID: 33359868 DOI: 10.1016/j.actbio.2020.12.032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 15.0] [Reference Citation Analysis]
57 Cao X, Lu H, Liu J, Lu W, Guo L, Ma M, Zhang B, Guo Y. 3D plotting in the preparation of newberyite, struvite, and brushite porous scaffolds: using magnesium oxide as a starting material. J Mater Sci: Mater Med 2019;30. [DOI: 10.1007/s10856-019-6290-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
58 Madry H, Venkatesan JK, Carballo-Pedrares N, Rey-Rico A, Cucchiarini M. Scaffold-Mediated Gene Delivery for Osteochondral Repair. Pharmaceutics 2020;12:E930. [PMID: 33003607 DOI: 10.3390/pharmaceutics12100930] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
59 Chandra G, Pandey A. Biodegradable bone implants in orthopedic applications: a review. Biocybernetics and Biomedical Engineering 2020;40:596-610. [DOI: 10.1016/j.bbe.2020.02.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
60 Osório LA, Silva E, Mackay RE. A Review of Biomaterials and Scaffold Fabrication for Organ-on-a-Chip (OOAC) Systems. Bioengineering (Basel) 2021;8:113. [PMID: 34436116 DOI: 10.3390/bioengineering8080113] [Reference Citation Analysis]
61 Remy MT, Akkouch A, He L, Eliason S, Sweat ME, Krongbaramee T, Fei F, Qian F, Amendt BA, Song X, Hong L. Rat Calvarial Bone Regeneration by 3D-Printed β-Tricalcium Phosphate Incorporating MicroRNA-200c. ACS Biomater Sci Eng 2021;7:4521-34. [PMID: 34437807 DOI: 10.1021/acsbiomaterials.0c01756] [Reference Citation Analysis]
62 Du C, Huang W. Progress and prospects of nanocomposite hydrogels in bone tissue engineering. Nanocomposites 2022;8:102-24. [DOI: 10.1080/20550324.2022.2076025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Zhou H, Yu K, Jiang H, Deng R, Chu L, Cao Y, Zheng Y, Lu W, Deng Z, Liang B. A Three-in-One Strategy: Injectable Biomimetic Porous Hydrogels for Accelerating Bone Regeneration via Shape-Adaptable Scaffolds, Controllable Magnesium Ion Release, and Enhanced Osteogenic Differentiation. Biomacromolecules 2021;22:4552-68. [PMID: 34590825 DOI: 10.1021/acs.biomac.1c00842] [Reference Citation Analysis]
64 Xue Z, Wang Z, Sun A, Huang J, Wu W, Chen M, Hao X, Huang Z, Lin X, Weng S. Rapid construction of polyetheretherketone (PEEK) biological implants incorporated with brushite (CaHPO4·2H2O) and antibiotics for anti-infection and enhanced osseointegration. Mater Sci Eng C Mater Biol Appl 2020;111:110782. [PMID: 32279744 DOI: 10.1016/j.msec.2020.110782] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
65 Lin Z, Zhao Y, Chu PK, Wang L, Pan H, Zheng Y, Wu S, Liu X, Cheung KM, Wong T, Yeung KW. A functionalized TiO2/Mg2TiO4 nano-layer on biodegradable magnesium implant enables superior bone-implant integration and bacterial disinfection. Biomaterials 2019;219:119372. [DOI: 10.1016/j.biomaterials.2019.119372] [Cited by in Crossref: 33] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
66 Chen R, Huang H, Liang L, Zhang W, Zheng Y, Fu D, Lin S. Improving the repair mechanism and miRNA expression profile of tibial defect in rats based on silent information regulator 7 protein analysis of mesenchymal stem cells. Bioengineered 2022;13:4674-87. [PMID: 35139764 DOI: 10.1080/21655979.2022.2027066] [Reference Citation Analysis]
67 He F, Yuan X, Lu T, Wang Y, Feng S, Shi X, Wang L, Ye J, Yang H. Preparation and characterization of novel lithium magnesium phosphate bioceramic scaffolds facilitating bone generation. J Mater Chem B 2022. [PMID: 35506906 DOI: 10.1039/d2tb00471b] [Reference Citation Analysis]
68 Putra NE, Mirzaali MJ, Apachitei I, Zhou J, Zadpoor AA. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution. Acta Biomater 2020;109:1-20. [PMID: 32268239 DOI: 10.1016/j.actbio.2020.03.037] [Cited by in Crossref: 49] [Cited by in F6Publishing: 36] [Article Influence: 24.5] [Reference Citation Analysis]
69 Liang W, Gao M, Lou J, Bai Y, Zhang J, Lu T, Sun X, Ye J, Li B, Sun L, Heng BC, Zhang X, Deng X. Integrating silicon/zinc dual elements with PLGA microspheres in calcium phosphate cement scaffolds synergistically enhances bone regeneration. J Mater Chem B 2020;8:3038-49. [PMID: 32196049 DOI: 10.1039/c9tb02901j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
70 Xu Y, Zhang F, Zhai W, Cheng S, Li J, Wang Y. Unraveling of Advances in 3D-Printed Polymer-Based Bone Scaffolds. Polymers 2022;14:566. [DOI: 10.3390/polym14030566] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
71 Collins MN, Ren G, Young K, Pina S, Reis RL, Oliveira JM. Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering. Adv Funct Mater 2021;31:2010609. [DOI: 10.1002/adfm.202010609] [Cited by in Crossref: 72] [Cited by in F6Publishing: 40] [Article Influence: 72.0] [Reference Citation Analysis]
72 Vidal L, Kampleitner C, Brennan MÁ, Hoornaert A, Layrolle P. Reconstruction of Large Skeletal Defects: Current Clinical Therapeutic Strategies and Future Directions Using 3D Printing. Front Bioeng Biotechnol 2020;8:61. [PMID: 32117940 DOI: 10.3389/fbioe.2020.00061] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 13.5] [Reference Citation Analysis]
73 Cui Y, Li H, Li Y, Mao L. Novel insights into nanomaterials for immunomodulatory bone regeneration. Nanoscale Adv 2022;4:334-52. [DOI: 10.1039/d1na00741f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
74 Kashirina A, Yao Y, Liu Y, Leng J. Biopolymers as bone substitutes: a review. Biomater Sci 2019;7:3961-83. [PMID: 31364613 DOI: 10.1039/c9bm00664h] [Cited by in Crossref: 44] [Cited by in F6Publishing: 15] [Article Influence: 14.7] [Reference Citation Analysis]
75 Li KD, Wang Y, Sun Q, Li MS, Chen JL, Liu L. Rabbit umbilical cord mesenchymal stem cells: A new option for tissue engineering. J Gene Med 2021;23:e3282. [PMID: 33047422 DOI: 10.1002/jgm.3282] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
76 Raveau S, Jordana F. Tissue Engineering and Three-Dimensional Printing in Periodontal Regeneration: A Literature Review. J Clin Med 2020;9:E4008. [PMID: 33322447 DOI: 10.3390/jcm9124008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
77 Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
78 Garot C, Bettega G, Picart C. Additive Manufacturing of Material Scaffolds for Bone Regeneration: Toward Application in the Clinics. Adv Funct Mater 2021;31:2006967. [PMID: 33531885 DOI: 10.1002/adfm.202006967] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 30.0] [Reference Citation Analysis]
79 Kantaros A, Piromalis D. Fabricating Lattice Structures via 3D Printing: The Case of Porous Bio-Engineered Scaffolds. Applied Mechanics 2021;2:289-302. [DOI: 10.3390/applmech2020018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
80 Zafeiris K, Brasinika D, Karatza A, Koumoulos E, Karoussis IK, Kyriakidou K, Charitidis CA. Additive manufacturing of hydroxyapatite-chitosan-genipin composite scaffolds for bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl 2021;119:111639. [PMID: 33321677 DOI: 10.1016/j.msec.2020.111639] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
81 Chanes-cuevas OA, Arellano-sánchez U, Álvarez-gayosso CA, Suaste-olmos F, Villarreal-ramírez E, Álvarez-fregoso O, García-hipólito M, González-alva P, Álvarez-pérez MA. Synthesis of PLA/SBA-15 Composite Scaffolds for Bone Tissue Engineering. Mat Res 2020;23:e20200211. [DOI: 10.1590/1980-5373-mr-2020-0211] [Reference Citation Analysis]
82 Chen Z, Zhang Y, Zheng L, Zhang H, Shi H, Zhang X, Liu B. Mineralized self-assembled silk fibroin/cellulose interpenetrating network aerogel for bone tissue engineering. Materials Science and Engineering: C 2021. [DOI: 10.1016/j.msec.2021.112549] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Pankongadisak P, Tsekoura E, Suwantong O, Uludağ H. Electrospun gelatin matrices with bioactive pDNA polyplexes. International Journal of Biological Macromolecules 2020;149:296-308. [DOI: 10.1016/j.ijbiomac.2020.01.252] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
84 Sun S, Jiao Z, Wang Y, Wu Z, Wang H, Ji Q, Liu Y, Wang Z, Zhang P. Porous polyetheretherketone microcarriers fabricated via hydroxylation together with cell-derived mineralized extracellular matrix coatings promote cell expansion and bone regeneration. Regen Biomater 2021;8:rbab013. [PMID: 33763233 DOI: 10.1093/rb/rbab013] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
85 Zhou Z, Wang Y, Qian Y, Pan X, Zhu J, Zhang Z, Qian Z, Sun Z, Pi B. Cystine dimethyl ester cross-linked PEG-poly(urethane-urea)/nano-hydroxyapatite composited biomimetic scaffold for bone defect repair. J Biomater Sci Polym Ed 2020;31:407-22. [PMID: 31747530 DOI: 10.1080/09205063.2019.1696004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
86 Adithya SP, Sidharthan DS, Abhinandan R, Balagangadharan K, Selvamurugan N. Nanosheets-incorporated bio-composites containing natural and synthetic polymers/ceramics for bone tissue engineering. International Journal of Biological Macromolecules 2020;164:1960-72. [DOI: 10.1016/j.ijbiomac.2020.08.053] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
87 Dong Q, Zhang M, Zhou X, Shao Y, Li J, Wang L, Chu C, Xue F, Yao Q, Bai J. 3D-printed Mg-incorporated PCL-based scaffolds: A promising approach for bone healing. Mater Sci Eng C Mater Biol Appl 2021;129:112372. [PMID: 34579891 DOI: 10.1016/j.msec.2021.112372] [Reference Citation Analysis]
88 Oladapo BI, Zahedi SA, Ismail SO, Olawade DB. Recent advances in biopolymeric composite materials: Future sustainability of bone-implant. Renewable and Sustainable Energy Reviews 2021;150:111505. [DOI: 10.1016/j.rser.2021.111505] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
89 Navalón C, Ros-tárraga P, Murciano A, Velasquez P, Mazón P, De Aza PN. Easy manufacturing of 3D ceramic scaffolds by the foam replica technique combined with sol-gel or ceramic slurry. Ceramics International 2019;45:18338-46. [DOI: 10.1016/j.ceramint.2019.06.048] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
90 Huang B, Aslan E, Jiang Z, Daskalakis E, Jiao M, Aldalbahi A, Vyas C, Bártolo P. Engineered dual-scale poly (ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regeneration. Additive Manufacturing 2020;36:101452. [DOI: 10.1016/j.addma.2020.101452] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
91 Toma AI, Fuller JM, Willett NJ, Goudy SL. Oral wound healing models and emerging regenerative therapies. Transl Res 2021;236:17-34. [PMID: 34161876 DOI: 10.1016/j.trsl.2021.06.003] [Reference Citation Analysis]
92 Gautam G, Kumar S, Kumar K. Processing of biomaterials for bone tissue engineering: State of the art. Materials Today: Proceedings 2022;50:2206-17. [DOI: 10.1016/j.matpr.2021.09.459] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
93 Lauer A, Wolf P, Mehler D, Götz H, Rüzgar M, Baranowski A, Henrich D, Rommens PM, Ritz U. Biofabrication of SDF-1 Functionalized 3D-Printed Cell-Free Scaffolds for Bone Tissue Regeneration. Int J Mol Sci 2020;21:E2175. [PMID: 32245268 DOI: 10.3390/ijms21062175] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
94 Wang Y, Song X, Lei R, Zhang N, Zhang L, Xiao W, Xu J, Lin J. Adipose-derived stem cell sheets combined with β-tricalcium phosphate/collagen-I fiber scaffold improve cell osteogenesis. Exp Ther Med 2021;21:452. [PMID: 33747187 DOI: 10.3892/etm.2021.9882] [Reference Citation Analysis]
95 Govoni M, Vivarelli L, Mazzotta A, Stagni C, Maso A, Dallari D. Commercial Bone Grafts Claimed as an Alternative to Autografts: Current Trends for Clinical Applications in Orthopaedics. Materials (Basel) 2021;14:3290. [PMID: 34198691 DOI: 10.3390/ma14123290] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
96 Top N, Şahin İ, Gökçe H, Gökçe H. Computer-aided design and additive manufacturing of bone scaffolds for tissue engineering: state of the art. Journal of Materials Research 2021;36:3725-45. [DOI: 10.1557/s43578-021-00156-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
97 Luo K, Wang L, Chen X, Zeng X, Zhou S, Zhang P, Li J. Porous 3D polyurethane composite scaffolds with incorporation of highly mineralized calcium citrate for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2021.2014483] [Reference Citation Analysis]
98 Wang S, Umrath F, Cen W, Reinert S, Alexander D. Angiogenic Potential of VEGF Mimetic Peptides for the Biofunctionalization of Collagen/Hydroxyapatite Composites. Biomolecules 2021;11:1538. [PMID: 34680173 DOI: 10.3390/biom11101538] [Reference Citation Analysis]
99 Ferrández-montero A, Carlier B, Agniel R, Leroy-dudal J, Vancaeyzeele C, Plesse C. 4D smart porous scaffolds based on the polyHIPE architecture and electroactive PEDOT. J Mater Chem C 2021;9:12388-98. [DOI: 10.1039/d1tc01846a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Phan EN, Hsu WK. Novel Approaches Guiding the Future of Spinal Biologics for Bone Regeneration. Curr Rev Musculoskelet Med. [DOI: 10.1007/s12178-022-09757-4] [Reference Citation Analysis]
101 Weng W, Häussling V, Aspera-Werz RH, Springer F, Rinderknecht H, Braun B, Küper MA, Nussler AK, Ehnert S. Material-Dependent Formation and Degradation of Bone Matrix-Comparison of Two Cryogels. Bioengineering (Basel) 2020;7:E52. [PMID: 32517006 DOI: 10.3390/bioengineering7020052] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
102 Wang S, Huang Z, Liu L, Shi Z, Liu J, Li Z, Hao Y. Design and study of in vivo bone formation characteristics of biodegradable bioceramic. Materials & Design 2021;212:110242. [DOI: 10.1016/j.matdes.2021.110242] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
103 Xie Y, Kawazoe N, Yang Y, Chen G. Preparation of mesh-like collagen scaffolds for tissue engineering. Mater Adv 2022;3:1556-64. [DOI: 10.1039/d1ma01166a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
104 Kurochkin II, Kurochkin IN, Kolosova OY, Lozinsky VI. Cryostructuring of Polymeric Systems : Application of Deep Neural Networks for the Classification of Structural Features Peculiar to Macroporous Poly(vinyl alcohol) Cryogels Prepared without and with the Additives of Chaotropes or Kosmotropes. Molecules 2020;25:E4480. [PMID: 33003473 DOI: 10.3390/molecules25194480] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Doustdar F, Olad A, Ghorbani M. Effect of glutaraldehyde and calcium chloride as different crosslinking agents on the characteristics of chitosan/cellulose nanocrystals scaffold. Int J Biol Macromol 2022;208:912-24. [PMID: 35367272 DOI: 10.1016/j.ijbiomac.2022.03.193] [Reference Citation Analysis]
106 Jiang S, Wang M, He J. A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy. Bioeng Transl Med 2021;6:e10206. [PMID: 34027093 DOI: 10.1002/btm2.10206] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
107 Gatto ML, Groppo R, Bloise N, Fassina L, Visai L, Galati M, Iuliano L, Mengucci P. Topological, Mechanical and Biological Properties of Ti6Al4V Scaffolds for Bone Tissue Regeneration Fabricated with Reused Powders via Electron Beam Melting. Materials (Basel) 2021;14:E224. [PMID: 33466387 DOI: 10.3390/ma14010224] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
108 Yang L, He X, Jing G, Wang H, Niu J, Qian Y, Wang S. Layered Double Hydroxide Nanoparticles with Osteogenic Effects as miRNA Carriers to Synergistically Promote Osteogenesis of MSCs. ACS Appl Mater Interfaces 2021;13:48386-402. [PMID: 34618442 DOI: 10.1021/acsami.1c14382] [Reference Citation Analysis]
109 Bassi G, Grimaudo MA, Panseri S, Montesi M. Advanced Multi-Dimensional Cellular Models as Emerging Reality to Reproduce In Vitro the Human Body Complexity. Int J Mol Sci 2021;22:1195. [PMID: 33530487 DOI: 10.3390/ijms22031195] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
110 Luo K, Gao X, Gao Y, Li Y, Deng M, Tan J, Gou J, Liu C, Dou C, Li Z, Zhang Z, Xu J, Luo F. Multiple integrin ligands provide a highly adhesive and osteoinductive surface that improves selective cell retention technology. Acta Biomater 2019;85:106-16. [PMID: 30557698 DOI: 10.1016/j.actbio.2018.12.018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
111 Li R, Li D, Wang H, Chen K, Wang S, Xu J, Ji P. Exosomes from adipose-derived stem cells regulate M1/M2 macrophage phenotypic polarization to promote bone healing via miR-451a/MIF. Stem Cell Res Ther 2022;13:149. [PMID: 35395782 DOI: 10.1186/s13287-022-02823-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
112 Cavo M, Serio F, Kale NR, D'Amone E, Gigli G, Del Mercato LL. Electrospun nanofibers in cancer research: from engineering of in vitro 3D cancer models to therapy. Biomater Sci 2020;8:4887-905. [PMID: 32830832 DOI: 10.1039/d0bm00390e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
113 Lewandowska-Łańcucka J, Gilarska A, Buła A, Horak W, Łatkiewicz A, Nowakowska M. Genipin crosslinked bioactive collagen/chitosan/hyaluronic acid injectable hydrogels structurally amended via covalent attachment of surface-modified silica particles. Int J Biol Macromol 2019;136:1196-208. [PMID: 31252014 DOI: 10.1016/j.ijbiomac.2019.06.184] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
114 Chandra G, Pandey A. Preparation Strategies for Mg-alloys for Biodegradable Orthopaedic Implants and Other Biomedical Applications: A Review. IRBM 2020. [DOI: 10.1016/j.irbm.2020.06.003] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 10.5] [Reference Citation Analysis]
115 Oliver JD, Jia S, Halpern LR, Graham EM, Turner EC, Colombo JS, Grainger DW, D'Souza RN. Innovative Molecular and Cellular Therapeutics in Cleft Palate Tissue Engineering. Tissue Eng Part B Rev 2021;27:215-37. [PMID: 32873216 DOI: 10.1089/ten.TEB.2020.0181] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
116 Dong Q, Li Y, Jiang H, Zhou X, Liu H, Lu M, Chu C, Xue F, Bai J. 3D-cubic interconnected porous Mg-based scaffolds for bone repair. Journal of Magnesium and Alloys 2021;9:1329-38. [DOI: 10.1016/j.jma.2020.05.022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
117 Petre DG, Leeuwenburgh SCG. The Use of Fibers in Bone Tissue Engineering. Tissue Eng Part B Rev 2022;28:141-59. [PMID: 33375900 DOI: 10.1089/ten.TEB.2020.0252] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
118 Janarthanan G, Noh I. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications. Journal of Materials Science & Technology 2021;63:35-53. [DOI: 10.1016/j.jmst.2020.02.052] [Cited by in Crossref: 13] [Article Influence: 13.0] [Reference Citation Analysis]
119 Sun X, Ma Z, Zhao X, Jin W, Zhang C, Ma J, Qiang L, Wang W, Deng Q, Yang H, Zhao J, Liang Q, Zhou X, Li T, Wang J. Three-dimensional bioprinting of multicell-laden scaffolds containing bone morphogenic protein-4 for promoting M2 macrophage polarization and accelerating bone defect repair in diabetes mellitus. Bioact Mater 2021;6:757-69. [PMID: 33024897 DOI: 10.1016/j.bioactmat.2020.08.030] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
120 Chen S, Zhu L, Wen W, Lu L, Zhou C, Luo B. Fabrication and Evaluation of 3D Printed Poly(l-lactide) Scaffold Functionalized with Quercetin-Polydopamine for Bone Tissue Engineering. ACS Biomater Sci Eng 2019;5:2506-18. [PMID: 33405757 DOI: 10.1021/acsbiomaterials.9b00254] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
121 Lemos R, Maia FR, Reis RL, Oliveira JM. Engineering of Extracellular Matrix‐Like Biomaterials at Nano‐ and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering. Advanced NanoBiomed Research 2022;2:2100116. [DOI: 10.1002/anbr.202100116] [Reference Citation Analysis]
122 Yang R, Yan Y, Wu Z, Wei Y, Song H, Zhu L, Zhao C, Xu N, Fu J, Huo K. Resveratrol-loaded titania nanotube coatings promote osteogenesis and inhibit inflammation through reducing the reactive oxygen species production via regulation of NF-κB signaling pathway. Mater Sci Eng C Mater Biol Appl 2021;131:112513. [PMID: 34857292 DOI: 10.1016/j.msec.2021.112513] [Reference Citation Analysis]
123 Mueller ML, Ottensmeyer MP, Thamm JR, Schmelzeisen R, Troulis MJ, Guastaldi FPS. Increased Osteogenic Activity of Dynamic Cultured Composite Bone Scaffolds: Characterization and In Vitro Study. J Oral Maxillofac Surg 2021:S0278-2391(21)01321-5. [PMID: 34822754 DOI: 10.1016/j.joms.2021.10.011] [Reference Citation Analysis]
124 Wu S, Lei L, Zhang H, Liu J, Weir MD, Schneider A, Zhao L, Liu J, Xu HH. Nanographene oxide‐calcium phosphate to inhibit Staphylococcus aureus infection and support stem cells for bone tissue engineering. J Tissue Eng Regen Med 2020;14:1779-91. [DOI: 10.1002/term.3139] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
125 Liu X, Li L, Gaihre B, Park S, Li Y, Terzic A, Elder BD, Lu L. Scaffold-Free Spheroids with Two-Dimensional Heteronano-Layers (2DHNL) Enabling Stem Cell and Osteogenic Factor Codelivery for Bone Repair. ACS Nano 2022;16:2741-55. [PMID: 35072461 DOI: 10.1021/acsnano.1c09688] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
126 Xia B, Deng Y, Lv Y, Chen G. Stem cell recruitment based on scaffold features for bone tissue engineering. Biomater Sci 2021;9:1189-203. [PMID: 33355545 DOI: 10.1039/d0bm01591a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
127 Wang L, Sun L, Gu Z, Li W, Guo L, Ma S, Guo L, Zhang W, Han B, Chang J. N-carboxymethyl chitosan/sodium alginate composite hydrogel loading plasmid DNA as a promising gene activated matrix for in-situ burn wound treatment. Bioactive Materials 2021. [DOI: 10.1016/j.bioactmat.2021.12.012] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
128 Wang Y, Zhang W, Yao Q. Copper-based biomaterials for bone and cartilage tissue engineering. J Orthop Translat 2021;29:60-71. [PMID: 34094859 DOI: 10.1016/j.jot.2021.03.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
129 Pfeiffenberger M, Damerau A, Lang A, Buttgereit F, Hoff P, Gaber T. Fracture Healing Research-Shift towards In Vitro Modeling? Biomedicines 2021;9:748. [PMID: 34203470 DOI: 10.3390/biomedicines9070748] [Reference Citation Analysis]
130 Meng Z, He J, Li J, Su Y, Li D. Melt-based, solvent-free additive manufacturing of biodegradable polymeric scaffolds with designer microstructures for tailored mechanical/biological properties and clinical applications. Virtual and Physical Prototyping 2020;15:417-44. [DOI: 10.1080/17452759.2020.1808937] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
131 Zhu L, Luo D, Liu Y. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int J Oral Sci 2020;12:6. [PMID: 32024822 DOI: 10.1038/s41368-020-0073-y] [Cited by in Crossref: 82] [Cited by in F6Publishing: 59] [Article Influence: 41.0] [Reference Citation Analysis]
132 Zhao D, Nuntanaranont T, Thuaksubun N, Meesane J. Osteo-conductive hydrogel scaffolds of poly(vinylalcohol) with silk fibroin particles for bone augmentation: Structural formation and in vitro testing. Journal of Bioactive and Compatible Polymers 2021;36:481-96. [DOI: 10.1177/08839115211055720] [Reference Citation Analysis]
133 Karl D, Jastram B, Kamm PH, Schwandt H, Gurlo A, Schmidt F. Evaluating porous polylactide-co-glycolide/bioactive glass composite microsphere powders for laser sintering of scaffolds. Powder Technology 2019;354:289-300. [DOI: 10.1016/j.powtec.2019.06.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
134 Xie Y, Lee K, Wang X, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Interconnected collagen porous scaffolds prepared with sacrificial PLGA sponge templates for cartilage tissue engineering. J Mater Chem B 2021;9:8491-500. [PMID: 34553735 DOI: 10.1039/d1tb01559a] [Reference Citation Analysis]
135 Xu C, Liu H, He Y, Li Y, He X. Endothelial progenitor cells promote osteogenic differentiation in co-cultured with mesenchymal stem cells via the MAPK-dependent pathway. Stem Cell Res Ther 2020;11:537. [PMID: 33308309 DOI: 10.1186/s13287-020-02056-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
136 Zhang L, Liu X, Li M, Xu E, Zhao F, Yuan H, Sun X, Zhang C, Gao L, Gao J. Feasibility of SiAlON–Si3N4 composite ceramic as a potential bone repairing material. Ceramics International 2020;46:1760-5. [DOI: 10.1016/j.ceramint.2019.09.150] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
137 Retegi-Carrión S, Ferrandez-Montero A, Eguiluz A, Ferrari B, Abarrategi A. The Effect of Ca2+ and Mg2+ Ions Loaded at Degradable PLA Membranes on the Proliferation and Osteoinduction of MSCs. Polymers (Basel) 2022;14:2422. [PMID: 35745998 DOI: 10.3390/polym14122422] [Reference Citation Analysis]
138 Wu X, Walsh K, Hoff BL, Camci-Unal G. Mineralization of Biomaterials for Bone Tissue Engineering. Bioengineering (Basel) 2020;7:E132. [PMID: 33092121 DOI: 10.3390/bioengineering7040132] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
139 Bordone M, Bettencourt A. Management of bone diseases: looking at scaffold-based strategies for drug delivery. Drug Deliv Transl Res 2022. [PMID: 35816230 DOI: 10.1007/s13346-022-01191-w] [Reference Citation Analysis]
140 Hu X, Lin Z, He J, Zhou M, Yang S, Wang Y, Li K. Recent progress in 3D printing degradable polylactic acid‐based bone repair scaffold for the application of cancellous bone defect. MedComm – Biomaterials and Applications 2022;1. [DOI: 10.1002/mba2.14] [Reference Citation Analysis]
141 Zhao ZH, Ma XL, Zhao B, Tian P, Ma JX, Kang JY, Zhang Y, Guo Y, Sun L. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration. Cell Prolif 2021;54:e13043. [PMID: 34008897 DOI: 10.1111/cpr.13043] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
142 Beatrice CAG, Shimomura KMB, Backes EH, Harb SV, Costa LC, Passador FR, Pessan LA. Engineering printable composites of poly (ε‐polycaprolactone) / β‐tricalcium phosphate for biomedical applications. Polymer Composites 2021;42:1198-213. [DOI: 10.1002/pc.25893] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
143 Emara A, Shah R. Recent update on craniofacial tissue engineering. J Tissue Eng 2021;12:20417314211003735. [PMID: 33959245 DOI: 10.1177/20417314211003735] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
144 Zhang J, Liu W, Sui P, Nan J, Wei B, Xu C, He L, Zheng M, Wang H. Fabrication of a stepwise degradable hybrid bioscaffold based on the natural and partially denatured collagen. Int J Biol Macromol 2022;213:416-26. [PMID: 35661667 DOI: 10.1016/j.ijbiomac.2022.05.184] [Reference Citation Analysis]
145 Dong R, Bai Y, Dai J, Deng M, Zhao C, Tian Z, Zeng F, Liang W, Liu L, Dong S. Engineered scaffolds based on mesenchymal stem cells/preosteoclasts extracellular matrix promote bone regeneration. J Tissue Eng 2020;11:2041731420926918. [PMID: 32551034 DOI: 10.1177/2041731420926918] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
146 Liu L, Wang S, Liu J, Deng F, Li Z, Hao Y. Architectural design of Ti6Al4V scaffold controls the osteogenic volume and application area of the scaffold. Journal of Materials Research and Technology 2020;9:15849-61. [DOI: 10.1016/j.jmrt.2020.11.061] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
147 Kazemi M, Dehghan MM, Azami M. Biological evaluation of porous nanocomposite scaffolds based on strontium substituted β-TCP and bioactive glass: An in vitro and in vivo study. Mater Sci Eng C Mater Biol Appl 2019;105:110071. [PMID: 31546377 DOI: 10.1016/j.msec.2019.110071] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
148 Luo C, Fang H, Zhou M, Li J, Zhang X, Liu S, Zhou C, Hou J, He H, Sun J, Wang Z. Biomimetic open porous structured core-shell microtissue with enhanced mechanical properties for bottom-up bone tissue engineering. Theranostics 2019;9:4663-77. [PMID: 31367248 DOI: 10.7150/thno.34464] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
149 Madi M. Induced osteogenesis using biodegradable and titanium periosteal distractors. Saudi Dent J 2021;33:434-40. [PMID: 34803283 DOI: 10.1016/j.sdentj.2020.12.008] [Reference Citation Analysis]
150 Wu M, Wu P, Xiao L, Zhao Y, Yan F, Liu X, Xie Y, Zhang C, Chen Y, Cai L. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo. Int J Biol Macromol 2020;162:1627-41. [PMID: 32781127 DOI: 10.1016/j.ijbiomac.2020.08.029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
151 Bai, Gong, Chen, Sun, Zhang, Cai, Zhu, Xie. Additive Manufacturing of Customized Metallic Orthopedic Implants: Materials, Structures, and Surface Modifications. Metals 2019;9:1004. [DOI: 10.3390/met9091004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 3] [Article Influence: 9.7] [Reference Citation Analysis]
152 Lin K, Sheikh R, Romanazzo S, Roohani I. 3D Printing of Bioceramic Scaffolds-Barriers to the Clinical Translation: From Promise to Reality, and Future Perspectives. Materials (Basel) 2019;12:E2660. [PMID: 31438561 DOI: 10.3390/ma12172660] [Cited by in Crossref: 31] [Cited by in F6Publishing: 19] [Article Influence: 10.3] [Reference Citation Analysis]
153 Kang J, Dong E, Li D, Dong S, Zhang C, Wang L. Anisotropy characteristics of microstructures for bone substitutes and porous implants with application of additive manufacturing in orthopaedic. Materials & Design 2020;191:108608. [DOI: 10.1016/j.matdes.2020.108608] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
154 Tian B, Wang N, Jiang Q, Tian L, Hu L, Zhang Z. The immunogenic reaction and bone defect repair function of ε-poly-L-lysine (EPL)-coated nanoscale PCL/HA scaffold in rabbit calvarial bone defect. J Mater Sci Mater Med 2021;32:63. [PMID: 34097140 DOI: 10.1007/s10856-021-06533-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
155 López-González I, Zamora-Ledezma C, Sanchez-Lorencio MI, Tristante Barrenechea E, Gabaldón-Hernández JA, Meseguer-Olmo L. Modifications in Gene Expression in the Process of Osteoblastic Differentiation of Multipotent Bone Marrow-Derived Human Mesenchymal Stem Cells Induced by a Novel Osteoinductive Porous Medical-Grade 3D-Printed Poly(ε-caprolactone)/β-tricalcium Phosphate Composite. Int J Mol Sci 2021;22:11216. [PMID: 34681873 DOI: 10.3390/ijms222011216] [Reference Citation Analysis]
156 Zhao Y, Wang Z, Zhao J, Hussain M, Wang M. Additive Manufacturing in Orthopedics: A Review. ACS Biomater Sci Eng 2022;8:1367-80. [PMID: 35266709 DOI: 10.1021/acsbiomaterials.1c01072] [Reference Citation Analysis]
157 Ramos-rodriguez DH, Pashneh-tala S, Bains AK, Moorehead RD, Kassos N, Kelly AL, Paterson TE, Orozco-diaz CA, Gill AA, Ortega Asencio I. Demonstrating the Potential of Using Bio-Based Sustainable Polyester Blends for Bone Tissue Engineering Applications. Bioengineering 2022;9:163. [DOI: 10.3390/bioengineering9040163] [Reference Citation Analysis]
158 Belgio B, Salvetti AP, Mantero S, Boschetti F. The Evolution of Fabrication Methods in Human Retina Regeneration. Applied Sciences 2021;11:4102. [DOI: 10.3390/app11094102] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
159 Häussling V, Deninger S, Vidoni L, Rinderknecht H, Ruoß M, Arnscheidt C, Athanasopulu K, Kemkemer R, Nussler AK, Ehnert S. Impact of Four Protein Additives in Cryogels on Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. Bioengineering (Basel) 2019;6:E67. [PMID: 31394780 DOI: 10.3390/bioengineering6030067] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
160 Mata NA, Arango-ospina M, Velasquez P, Murciano A, De Aza PN, Boccaccini AR. Effect of Sr, Mg and Fe substitution on the physico-chemical and biological properties of Si Ca P multilayer scaffolds. Boletín de la Sociedad Española de Cerámica y Vidrio 2021. [DOI: 10.1016/j.bsecv.2021.11.005] [Reference Citation Analysis]
161 Bayram C, Jiang X, Gultekinoglu M, Ozturk S, Ulubayram K, Edirisinghe M. Biofabrication of Gelatin Tissue Scaffolds with Uniform Pore Size via Microbubble Assembly. Macromol Mater Eng 2019;304:1900394. [DOI: 10.1002/mame.201900394] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
162 Perić Kačarević Ž, Rider P, Alkildani S, Retnasingh S, Pejakić M, Schnettler R, Gosau M, Smeets R, Jung O, Barbeck M. An introduction to bone tissue engineering. Int J Artif Organs 2020;43:69-86. [PMID: 31544576 DOI: 10.1177/0391398819876286] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
163 Alcala-Orozco CR, Cui X, Hooper GJ, Lim KS, Woodfield TBF. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration. Acta Biomater 2021;132:188-216. [PMID: 33713862 DOI: 10.1016/j.actbio.2021.03.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
164 Grottkau BE, Hui Z, Yao Y, Pang Y. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques. Int J Mol Sci 2020;21:E315. [PMID: 31906530 DOI: 10.3390/ijms21010315] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
165 Banerjee A, Das S, Mandal M, Ganguly S. Fluidic embedding of additional macroporosity in alginate-gelatin composite structure for biomimetic application. J Biomater Sci Polym Ed 2020;31:2396-417. [PMID: 32838704 DOI: 10.1080/09205063.2020.1815278] [Reference Citation Analysis]
166 Bellet P, Gasparotto M, Pressi S, Fortunato A, Scapin G, Mba M, Menna E, Filippini F. Graphene-Based Scaffolds for Regenerative Medicine. Nanomaterials (Basel) 2021;11:404. [PMID: 33562559 DOI: 10.3390/nano11020404] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
167 Chen J, Zhang T, Hua W, Li P, Wang X. 3D Porous poly(lactic acid)/regenerated cellulose composite scaffolds based on electrospun nanofibers for biomineralization. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;585:124048. [DOI: 10.1016/j.colsurfa.2019.124048] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
168 Singh P, Shrivastava V, Abhash A, Yadav B, Singh I, Mondal D. Compressive deformation and corrosion behaviour of moderate to highly porous Ti4Al4Co (wt%) alloy foam. Materials Chemistry and Physics 2021;257:123718. [DOI: 10.1016/j.matchemphys.2020.123718] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
169 Li Y, Tan Z, Zhang J, Mu J, Wu H. Physical and Chemical Properties, Biosafety Evaluation, and Effects of Nano Natural Deer Bone Meal on Bone Marrow Mesenchymal Stem Cells. Front Bioeng Biotechnol 2022;10:891765. [DOI: 10.3389/fbioe.2022.891765] [Reference Citation Analysis]
170 Qi D, Zhao S, Zhang H, Liu B, She P, Yue X. Development of high-strength porous polyetheretherketone foam/nanosilver antibacterial composites for the prevention of postoperative infections in bone repair. Composites Communications 2022. [DOI: 10.1016/j.coco.2022.101127] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
171 Yu F, Geng D, Kuang Z, Huang S, Cheng Y, Chen Y, Leng F, Bei Y, Zhao Y, Tang Q, Huang Y, Xiang Q. Sequentially releasing self-healing hydrogel facilitated with TGFβ3-microspheres and bFGF to facilitates rat alveolar bone defect repair. Asian Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.ajps.2022.03.003] [Reference Citation Analysis]
172 Zhang B, Wang L, Song P, Pei X, Sun H, Wu L, Zhou C, Wang K, Fan Y, Zhang X. 3D printed bone tissue regenerative PLA/HA scaffolds with comprehensive performance optimizations. Materials & Design 2021;201:109490. [DOI: 10.1016/j.matdes.2021.109490] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 11.0] [Reference Citation Analysis]
173 Jiang Y, Lin H, Shao Z, Chen X, Li W, Ni Y. Reconstruction of an orbital defect in rabbits using a silk fibroin-bone microparticle complex. Int J Artif Organs 2022;:3913988221113354. [PMID: 35876430 DOI: 10.1177/03913988221113354] [Reference Citation Analysis]
174 Behrens SH. Oil-coated bubbles in particle suspensions, capillary foams, and related opportunities in colloidal multiphase systems. Current Opinion in Colloid & Interface Science 2020;50:101384. [DOI: 10.1016/j.cocis.2020.08.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]