BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rivoira M, Rodríguez V, Picotto G, Battaglino R, Tolosa de Talamoni N. Naringin prevents bone loss in a rat model of type 1 Diabetes mellitus. Archives of Biochemistry and Biophysics 2018;637:56-63. [DOI: 10.1016/j.abb.2017.12.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Chen Y, Qie X, Quan W, Zeng M, Qin F, Chen J, Adhikari B, He Z. Omnifarious fruit polyphenols: an omnipotent strategy to prevent and intervene diabetes and related complication? Crit Rev Food Sci Nutr 2021;:1-37. [PMID: 34792409 DOI: 10.1080/10408398.2021.2000932] [Reference Citation Analysis]
2 Bacanli M, Dilsiz SA, Başaran N, Başaran AA. Effects of phytochemicals against diabetes. Adv Food Nutr Res 2019;89:209-38. [PMID: 31351526 DOI: 10.1016/bs.afnr.2019.02.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 4.7] [Reference Citation Analysis]
3 Rodríguez V, Plavnik L, Tolosa de Talamoni N. Naringin attenuates liver damage in streptozotocin-induced diabetic rats. Biomedicine & Pharmacotherapy 2018;105:95-102. [DOI: 10.1016/j.biopha.2018.05.120] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
4 de Almeida AS, Pereira GC, Brum EDS, Silva CR, Antoniazzi CTD, Ardisson-Araújo D, Oliveira SM, Trevisan G. Role of TRPA1 expressed in bone tissue and the antinociceptive effect of the TRPA1 antagonist repeated administration in a breast cancer pain model. Life Sci 2021;276:119469. [PMID: 33811892 DOI: 10.1016/j.lfs.2021.119469] [Reference Citation Analysis]
5 Ham JR, Lee HI, Choi RY, Ryu HS, Yee ST, Kang KY, Lee MK. Heshouwu (Polygonum multiflorum Thunb.) Extract Attenuates Bone Loss in Diabetic Mice. Prev Nutr Food Sci 2019;24:121-7. [PMID: 31328115 DOI: 10.3746/pnf.2019.24.2.121] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Zheng HX, Chen J, Zu YX, Wang EZ, Qi SS. Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation. Int J Mol Sci 2020;21:E5303. [PMID: 32722636 DOI: 10.3390/ijms21155303] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
7 Li C, Zhang J, Lv F, Ge X, Li G. Naringin protects against bone loss in steroid-treated inflammatory bowel disease in a rat model. Archives of Biochemistry and Biophysics 2018;650:22-9. [DOI: 10.1016/j.abb.2018.05.011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
8 Preethi Soundarya S, Haritha Menon A, Viji Chandran S, Selvamurugan N. Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol 2018;119:1228-39. [PMID: 30107161 DOI: 10.1016/j.ijbiomac.2018.08.056] [Cited by in Crossref: 96] [Cited by in F6Publishing: 71] [Article Influence: 24.0] [Reference Citation Analysis]
9 Lu R, Zheng Z, Yin Y, Jiang Z. Genistein prevents bone loss in type 2 diabetic rats induced by streptozotocin. Food Nutr Res 2020;64. [PMID: 33447176 DOI: 10.29219/fnr.v64.3666] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
10 Liu C, Zhu R, Liu H, Li L, Chen B, Jia Q, Wang L, Ma R, Tian S, Wang M, Fu M, Niu J, Orekhov AN, Gao S, Zhang D, Zhao B. Aqueous Extract of Mori Folium Exerts Bone Protective Effect Through Regulation of Calcium and Redox Homeostasis via PTH/VDR/CaBP and AGEs/RAGE/Nox4/NF-κB Signaling in Diabetic Rats. Front Pharmacol 2018;9:1239. [PMID: 30459613 DOI: 10.3389/fphar.2018.01239] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
11 Han L, Fu Q, Deng C, Luo L, Xiang T, Zhao H. Immunomodulatory potential of flavonoids for the treatment of autoimmune diseases and tumour. Scand J Immunol 2022;95. [DOI: 10.1111/sji.13106] [Reference Citation Analysis]
12 Csuti A, Sik B, Ajtony Z. Measurement of Naringin from Citrus Fruits by High-Performance Liquid Chromatography - a Review. Crit Rev Anal Chem 2022;:1-14. [PMID: 35658668 DOI: 10.1080/10408347.2022.2082241] [Reference Citation Analysis]
13 Yu KE, Alder KD, Morris MT, Munger AM, Lee I, Cahill SV, Kwon HK, Back J, Lee FY. Re-appraising the potential of naringin for natural, novel orthopedic biotherapies. Ther Adv Musculoskelet Dis 2020;12:1759720X20966135. [PMID: 33343723 DOI: 10.1177/1759720X20966135] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Abuohashish HM, AlAsmari AF, Mohany M, Ahmed MM, Al-Rejaie SS. Supplementation of Morin Restores the Altered Bone Histomorphometry in Hyperglycemic Rodents via Regulation of Insulin/IGF-1 Signaling. Nutrients 2021;13:2365. [PMID: 34371877 DOI: 10.3390/nu13072365] [Reference Citation Analysis]
15 Sekaran S, Thangavelu L. Re-appraising the role of flavonols, flavones and flavonones on osteoblasts and osteoclasts- A review on its molecular mode of action. Chem Biol Interact 2022;:109831. [PMID: 35120918 DOI: 10.1016/j.cbi.2022.109831] [Reference Citation Analysis]
16 Lavrador P, Gaspar VM, Mano JF. Bioinspired bone therapies using naringin: applications and advances. Drug Discov Today. 2018;23:1293-1304. [PMID: 29747006 DOI: 10.1016/j.drudis.2018.05.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
17 Kohan R, Collin A, Guizzardi S, Tolosa de Talamoni N, Picotto G. Reactive oxygen species in cancer: a paradox between pro- and anti-tumour activities. Cancer Chemother Pharmacol 2020;86:1-13. [PMID: 32572519 DOI: 10.1007/s00280-020-04103-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]