BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mahler SV, Smith RJ, Moorman DE, Sartor GC, Aston-Jones G. Multiple roles for orexin/hypocretin in addiction. Prog Brain Res 2012;198:79-121. [PMID: 22813971 DOI: 10.1016/B978-0-444-59489-1.00007-0] [Cited by in Crossref: 140] [Cited by in F6Publishing: 76] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Ho CY, Berridge KC. An orexin hotspot in ventral pallidum amplifies hedonic 'liking' for sweetness. Neuropsychopharmacology 2013;38:1655-64. [PMID: 23463152 DOI: 10.1038/npp.2013.62] [Cited by in Crossref: 77] [Cited by in F6Publishing: 70] [Article Influence: 8.6] [Reference Citation Analysis]
2 Perrey DA, Decker AM, Li JX, Gilmour BP, Thomas BF, Harris DL, Runyon SP, Zhang Y. The importance of the 6- and 7-positions of tetrahydroisoquinolines as selective antagonists for the orexin 1 receptor. Bioorg Med Chem 2015;23:5709-24. [PMID: 26216017 DOI: 10.1016/j.bmc.2015.07.013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
3 González B, Jayanthi S, Gomez N, Torres OV, Sosa MH, Bernardi A, Urbano FJ, García-Rill E, Cadet JL, Bisagno V. Repeated methamphetamine and modafinil induce differential cognitive effects and specific histone acetylation and DNA methylation profiles in the mouse medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2018;82:1-11. [PMID: 29247759 DOI: 10.1016/j.pnpbp.2017.12.009] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
4 Schmeichel BE, Herman MA, Roberto M, Koob GF. Hypocretin Neurotransmission Within the Central Amygdala Mediates Escalated Cocaine Self-administration and Stress-Induced Reinstatement in Rats. Biol Psychiatry 2017;81:606-15. [PMID: 27567312 DOI: 10.1016/j.biopsych.2016.06.010] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 7.8] [Reference Citation Analysis]
5 Levy KA, Brodnik ZD, Shaw JK, Perrey DA, Zhang Y, España RA. Hypocretin receptor 1 blockade produces bimodal modulation of cocaine-associated mesolimbic dopamine signaling. Psychopharmacology (Berl) 2017;234:2761-76. [PMID: 28667509 DOI: 10.1007/s00213-017-4673-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
6 Baimel C, Bartlett SE, Chiou LC, Lawrence AJ, Muschamp JW, Patkar O, Tung LW, Borgland SL. Orexin/hypocretin role in reward: implications for opioid and other addictions. Br J Pharmacol 2015;172:334-48. [PMID: 24641197 DOI: 10.1111/bph.12639] [Cited by in Crossref: 97] [Cited by in F6Publishing: 92] [Article Influence: 12.1] [Reference Citation Analysis]
7 Sanchez-Alavez M, Benedict J, Wills DN, Ehlers CL. Effect of suvorexant on event-related oscillations and EEG sleep in rats exposed to chronic intermittent ethanol vapor and protracted withdrawal. Sleep 2019;42:zsz020. [PMID: 30715515 DOI: 10.1093/sleep/zsz020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
8 Farrell MR, Schoch H, Mahler SV. Modeling cocaine relapse in rodents: Behavioral considerations and circuit mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 2018;87:33-47. [PMID: 29305936 DOI: 10.1016/j.pnpbp.2018.01.002] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 9.8] [Reference Citation Analysis]
9 Freeman LR, Aston-Jones G. Activation of medial hypothalamic orexin neurons during a Go/No-Go task. Brain Res 2020;1731:145928. [PMID: 30176242 DOI: 10.1016/j.brainres.2018.08.031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
10 Anderson RI, Becker HC, Adams BL, Jesudason CD, Rorick-Kehn LM. Orexin-1 and orexin-2 receptor antagonists reduce ethanol self-administration in high-drinking rodent models. Front Neurosci 2014;8:33. [PMID: 24616657 DOI: 10.3389/fnins.2014.00033] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 6.0] [Reference Citation Analysis]
11 Yeoh JW, Campbell EJ, James MH, Graham BA, Dayas CV. Orexin antagonists for neuropsychiatric disease: progress and potential pitfalls. Front Neurosci 2014;8:36. [PMID: 24616658 DOI: 10.3389/fnins.2014.00036] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 7.4] [Reference Citation Analysis]
12 Figlewicz DP. Modulation of Food Reward by Endocrine and Environmental Factors: Update and Perspective. Psychosom Med 2015;77:664-70. [PMID: 25738439 DOI: 10.1097/PSY.0000000000000146] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
13 Bentzley BS, Aston-Jones G. Orexin-1 receptor signaling increases motivation for cocaine-associated cues. Eur J Neurosci 2015;41:1149-56. [PMID: 25754681 DOI: 10.1111/ejn.12866] [Cited by in Crossref: 74] [Cited by in F6Publishing: 61] [Article Influence: 10.6] [Reference Citation Analysis]
14 Lopez MF, Moorman DE, Aston-Jones G, Becker HC. The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice. Brain Res 2016;1636:74-80. [PMID: 26851547 DOI: 10.1016/j.brainres.2016.01.049] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
15 Hasanpour Razmanjani N, Reisi P. Effects of selective orexin receptor-2 and cannabinoid receptor-1 antagonists on the response of medial prefrontal cortex neurons to tramadol. Synapse 2022. [PMID: 35313383 DOI: 10.1002/syn.22232] [Reference Citation Analysis]
16 Gotter AL, Garson SL, Stevens J, Munden RL, Fox SV, Tannenbaum PL, Yao L, Kuduk SD, McDonald T, Uslaner JM, Tye SJ, Coleman PJ, Winrow CJ, Renger JJ. Differential sleep-promoting effects of dual orexin receptor antagonists and GABAA receptor modulators. BMC Neurosci 2014;15:109. [PMID: 25242351 DOI: 10.1186/1471-2202-15-109] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 3.5] [Reference Citation Analysis]
17 Haight JL, Fraser KM, Akil H, Flagel SB. Lesions of the paraventricular nucleus of the thalamus differentially affect sign- and goal-tracking conditioned responses. Eur J Neurosci 2015;42:2478-88. [PMID: 26228683 DOI: 10.1111/ejn.13031] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 5.1] [Reference Citation Analysis]
18 Pantazis CB, James MH, Bentzley BS, Aston-Jones G. The number of lateral hypothalamus orexin/hypocretin neurons contributes to individual differences in cocaine demand. Addict Biol 2020;25:e12795. [PMID: 31297913 DOI: 10.1111/adb.12795] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
19 Odegaard KE, Schaal VL, Clark AR, Koul S, Gowen A, Sankarasubramani J, Xiao P, Guda C, Lisco SJ, Yelamanchili SV, Pendyala G. Characterization of the intergenerational impact of in utero and postnatal oxycodone exposure. Transl Psychiatry 2020;10:329. [PMID: 32968044 DOI: 10.1038/s41398-020-01012-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Kaye JT, Bradford DE, Magruder KP, Curtin JJ. Probing for Neuroadaptations to Unpredictable Stressors in Addiction: Translational Methods and Emerging Evidence. J Stud Alcohol Drugs 2017;78:353-71. [PMID: 28499100 DOI: 10.15288/jsad.2017.78.353] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
21 Richardson K, Sweatt N, Tran H, Apprey V, Uthayathas S, Taylor R, Gupta K. Significant Quantitative Differences in Orexin Neuronal Activation After Pain Assessments in an Animal Model of Sickle Cell Disease. Front Mol Biosci 2020;7:5. [PMID: 32118032 DOI: 10.3389/fmolb.2020.00005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Perrey DA, German NA, Decker AM, Thorn D, Li JX, Gilmour BP, Thomas BF, Harris DL, Runyon SP, Zhang Y. Effect of 1-substitution on tetrahydroisoquinolines as selective antagonists for the orexin-1 receptor. ACS Chem Neurosci 2015;6:599-614. [PMID: 25643283 DOI: 10.1021/cn500330v] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
23 Merlo Pich E, Melotto S. Orexin 1 receptor antagonists in compulsive behavior and anxiety: possible therapeutic use. Front Neurosci 2014;8:26. [PMID: 24592206 DOI: 10.3389/fnins.2014.00026] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 3.8] [Reference Citation Analysis]
24 Barr JL, Zhao P, Brailoiu GC, Brailoiu E. Choline-Sigma-1R as an Additional Mechanism for Potentiation of Orexin by Cocaine. Int J Mol Sci 2021;22:5160. [PMID: 34068146 DOI: 10.3390/ijms22105160] [Reference Citation Analysis]
25 Morgan AJ, Harrod SB, Lacy RT, Stanley EM, Fadel JR. Intravenous prenatal nicotine exposure increases orexin expression in the lateral hypothalamus and orexin innervation of the ventral tegmental area in adult male rats. Drug Alcohol Depend 2013;132:562-70. [PMID: 23664126 DOI: 10.1016/j.drugalcdep.2013.04.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
26 Bai P, Bai S, Placzek MS, Lu X, Fiedler SA, Ntaganda B, Wey HY, Wang C. A New Positron Emission Tomography Probe for Orexin Receptors Neuroimaging. Molecules 2020;25:E1018. [PMID: 32106419 DOI: 10.3390/molecules25051018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
27 Akbar M, Egli M, Cho YE, Song BJ, Noronha A. Medications for alcohol use disorders: An overview. Pharmacol Ther 2018;185:64-85. [PMID: 29191394 DOI: 10.1016/j.pharmthera.2017.11.007] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 5.4] [Reference Citation Analysis]
28 Cho CH, Lee HJ, Woo HG, Choi JH, Greenwood TA, Kelsoe JR. CDH13 and HCRTR2 May Be Associated with Hypersomnia Symptom of Bipolar Depression: A Genome-Wide Functional Enrichment Pathway Analysis. Psychiatry Investig 2015;12:402-7. [PMID: 26207136 DOI: 10.4306/pi.2015.12.3.402] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
29 Moorman DE. The hypocretin/orexin system as a target for excessive motivation in alcohol use disorders. Psychopharmacology (Berl) 2018;235:1663-80. [PMID: 29508004 DOI: 10.1007/s00213-018-4871-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
30 Gao XB, Hermes G. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals. Front Syst Neurosci 2015;9:142. [PMID: 26539086 DOI: 10.3389/fnsys.2015.00142] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
31 Mahler SV, Moorman DE, Smith RJ, James MH, Aston-Jones G. Motivational activation: a unifying hypothesis of orexin/hypocretin function. Nat Neurosci 2014;17:1298-303. [PMID: 25254979 DOI: 10.1038/nn.3810] [Cited by in Crossref: 223] [Cited by in F6Publishing: 207] [Article Influence: 27.9] [Reference Citation Analysis]
32 Lei K, Kwok C, Darevsky D, Wegner SA, Yu J, Nakayama L, Pedrozo V, Anderson L, Ghotra S, Fouad M, Hopf FW. Nucleus Accumbens Shell Orexin-1 Receptors Are Critical Mediators of Binge Intake in Excessive-Drinking Individuals. Front Neurosci 2019;13:88. [PMID: 30814925 DOI: 10.3389/fnins.2019.00088] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
33 Kwok C, Lei K, Pedrozo V, Anderson L, Ghotra S, Walsh M, Li L, Yu J, Hopf FW. Differential importance of nucleus accumbens Ox1Rs and AMPARs for female and male mouse binge alcohol drinking. Sci Rep 2021;11:231. [PMID: 33420199 DOI: 10.1038/s41598-020-79935-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
34 Moorman DE, James MH, Kilroy EA, Aston-Jones G. Orexin/hypocretin neuron activation is correlated with alcohol seeking and preference in a topographically specific manner. Eur J Neurosci 2016;43:710-20. [PMID: 26750264 DOI: 10.1111/ejn.13170] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 7.3] [Reference Citation Analysis]
35 Perello M, Valdivia S, García Romero G, Raingo J. Considerations about rodent models of binge eating episodes.Front Psychol. 2014;5:372. [PMID: 24808881 DOI: 10.3389/fpsyg.2014.00372] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
36 Matzeu A, Martin-Fardon R. Targeting the orexin system for prescription opioid use disorder: Orexin-1 receptor blockade prevents oxycodone taking and seeking in rats. Neuropharmacology 2020;164:107906. [PMID: 31841797 DOI: 10.1016/j.neuropharm.2019.107906] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
37 Schmeichel BE, Barbier E, Misra KK, Contet C, Schlosburg JE, Grigoriadis D, Williams JP, Karlsson C, Pitcairn C, Heilig M, Koob GF, Vendruscolo LF. Hypocretin receptor 2 antagonism dose-dependently reduces escalated heroin self-administration in rats. Neuropsychopharmacology 2015;40:1123-9. [PMID: 25367502 DOI: 10.1038/npp.2014.293] [Cited by in Crossref: 49] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
38 Plaza-Zabala A, Flores Á, Martín-García E, Saravia R, Maldonado R, Berrendero F. A role for hypocretin/orexin receptor-1 in cue-induced reinstatement of nicotine-seeking behavior. Neuropsychopharmacology 2013;38:1724-36. [PMID: 23518606 DOI: 10.1038/npp.2013.72] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 4.9] [Reference Citation Analysis]
39 Mahler SV, Aston-Jones GS. Fos activation of selective afferents to ventral tegmental area during cue-induced reinstatement of cocaine seeking in rats. J Neurosci 2012;32:13309-26. [PMID: 22993446 DOI: 10.1523/JNEUROSCI.2277-12.2012] [Cited by in Crossref: 90] [Cited by in F6Publishing: 67] [Article Influence: 9.0] [Reference Citation Analysis]
40 Stice E, Figlewicz DP, Gosnell BA, Levine AS, Pratt WE. The contribution of brain reward circuits to the obesity epidemic. Neurosci Biobehav Rev 2013;37:2047-58. [PMID: 23237885 DOI: 10.1016/j.neubiorev.2012.12.001] [Cited by in Crossref: 125] [Cited by in F6Publishing: 132] [Article Influence: 12.5] [Reference Citation Analysis]
41 Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014;171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Cited by in Crossref: 153] [Cited by in F6Publishing: 141] [Article Influence: 19.1] [Reference Citation Analysis]
42 Radke AK, Sneddon EA, Frasier RM, Hopf FW. Recent Perspectives on Sex Differences in Compulsion-Like and Binge Alcohol Drinking. Int J Mol Sci 2021;22:3788. [PMID: 33917517 DOI: 10.3390/ijms22073788] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
43 Perrey DA, Decker AM, Zhang Y. Synthesis and Evaluation of Orexin-1 Receptor Antagonists with Improved Solubility and CNS Permeability. ACS Chem Neurosci 2018;9:587-602. [PMID: 29129052 DOI: 10.1021/acschemneuro.7b00402] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
44 Matzeu A, Martin-fardon R. Understanding the Role of Orexin Neuropeptides in Drug Addiction: Preclinical Studies and Translational Value. Front Behav Neurosci 2022;15:787595. [DOI: 10.3389/fnbeh.2021.787595] [Reference Citation Analysis]
45 Zhou WL, Gao XB, Picciotto MR. Acetylcholine Acts through Nicotinic Receptors to Enhance the Firing Rate of a Subset of Hypocretin Neurons in the Mouse Hypothalamus through Distinct Presynaptic and Postsynaptic Mechanisms.. eNeuro 2015;2:e0052. [PMID: 26322330 DOI: 10.1523/ENEURO.0052-14.2015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
46 Mavanji V, Georgopoulos AP, Kotz CM. Synchronous neuronal interactions in rat hypothalamic culture: a novel model for the study of network dynamics in metabolic disorders. Exp Brain Res 2021;239:755-64. [PMID: 33388905 DOI: 10.1007/s00221-020-05977-7] [Reference Citation Analysis]
47 Ferrucci M, Limanaqi F, Ryskalin L, Biagioni F, Busceti CL, Fornai F. The Effects of Amphetamine and Methamphetamine on the Release of Norepinephrine, Dopamine and Acetylcholine From the Brainstem Reticular Formation. Front Neuroanat 2019;13:48. [PMID: 31133823 DOI: 10.3389/fnana.2019.00048] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
48 Matzeu A, Martin-Fardon R. Targeting the Orexin System for Prescription Opioid Use Disorder. Brain Sci 2020;10:E226. [PMID: 32290110 DOI: 10.3390/brainsci10040226] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
49 Moorman DE, James MH, McGlinchey EM, Aston-Jones G. Differential roles of medial prefrontal subregions in the regulation of drug seeking. Brain Res 2015;1628:130-46. [PMID: 25529632 DOI: 10.1016/j.brainres.2014.12.024] [Cited by in Crossref: 103] [Cited by in F6Publishing: 114] [Article Influence: 12.9] [Reference Citation Analysis]
50 Matzeu A, Martin-Fardon R. Drug Seeking and Relapse: New Evidence of a Role for Orexin and Dynorphin Co-transmission in the Paraventricular Nucleus of the Thalamus. Front Neurol 2018;9:720. [PMID: 30210441 DOI: 10.3389/fneur.2018.00720] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
51 Nixon JP, Mavanji V, Butterick TA, Billington CJ, Kotz CM, Teske JA. Sleep disorders, obesity, and aging: the role of orexin. Ageing Res Rev 2015;20:63-73. [PMID: 25462194 DOI: 10.1016/j.arr.2014.11.001] [Cited by in Crossref: 61] [Cited by in F6Publishing: 51] [Article Influence: 7.6] [Reference Citation Analysis]
52 Bernstein DL, Badve PS, Barson JR, Bass CE, España RA. Hypocretin receptor 1 knockdown in the ventral tegmental area attenuates mesolimbic dopamine signaling and reduces motivation for cocaine. Addict Biol 2018;23:1032-45. [PMID: 28971565 DOI: 10.1111/adb.12553] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
53 James MH, Mahler SV, Moorman DE, Aston-Jones G. A Decade of Orexin/Hypocretin and Addiction: Where Are We Now? Curr Top Behav Neurosci 2017;33:247-81. [PMID: 28012090 DOI: 10.1007/7854_2016_57] [Cited by in Crossref: 80] [Cited by in F6Publishing: 76] [Article Influence: 16.0] [Reference Citation Analysis]
54 Martin-Fardon R, Cauvi G, Kerr TM, Weiss F. Differential role of hypothalamic orexin/hypocretin neurons in reward seeking motivated by cocaine versus palatable food. Addict Biol 2018;23:6-15. [PMID: 27558790 DOI: 10.1111/adb.12441] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
55 Haight JL, Fuller ZL, Fraser KM, Flagel SB. A food-predictive cue attributed with incentive salience engages subcortical afferents and efferents of the paraventricular nucleus of the thalamus. Neuroscience 2017;340:135-52. [PMID: 27793779 DOI: 10.1016/j.neuroscience.2016.10.043] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 5.2] [Reference Citation Analysis]
56 Dehkordi O, Rose JE, Asadi S, Manaye KF, Millis RM, Jayam-Trouth A. Neuroanatomical circuitry mediating the sensory impact of nicotine in the central nervous system. J Neurosci Res 2015;93:230-43. [PMID: 25223294 DOI: 10.1002/jnr.23477] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
57 Pizza F, Magnani M, Indrio C, Plazzi G. The hypocretin system and psychiatric disorders. Curr Psychiatry Rep 2014;16:433. [PMID: 24363104 DOI: 10.1007/s11920-013-0433-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
58 Lei K, Wegner SA, Yu JH, Mototake A, Hu B, Hopf FW. Nucleus Accumbens Shell and mPFC but Not Insula Orexin-1 Receptors Promote Excessive Alcohol Drinking. Front Neurosci 2016;10:400. [PMID: 27625592 DOI: 10.3389/fnins.2016.00400] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
59 Haight JL, Campus P, Maria-Rios CE, Johnson AM, Klumpner MS, Kuhn BN, Covelo IR, Morrow JD, Flagel SB. The lateral hypothalamus and orexinergic transmission in the paraventricular thalamus promote the attribution of incentive salience to reward-associated cues. Psychopharmacology (Berl) 2020;237:3741-58. [PMID: 32852601 DOI: 10.1007/s00213-020-05651-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
60 Moorman DE, James MH, Kilroy EA, Aston-Jones G. Orexin/hypocretin-1 receptor antagonism reduces ethanol self-administration and reinstatement selectively in highly-motivated rats. Brain Res 2017;1654:34-42. [PMID: 27771284 DOI: 10.1016/j.brainres.2016.10.018] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 8.5] [Reference Citation Analysis]
61 Chartoff EH, Connery HS. It's MORe exciting than mu: crosstalk between mu opioid receptors and glutamatergic transmission in the mesolimbic dopamine system. Front Pharmacol 2014;5:116. [PMID: 24904419 DOI: 10.3389/fphar.2014.00116] [Cited by in Crossref: 68] [Cited by in F6Publishing: 59] [Article Influence: 8.5] [Reference Citation Analysis]
62 Tung LW, Lu GL, Lee YH, Yu L, Lee HJ, Leishman E, Bradshaw H, Hwang LL, Hung MS, Mackie K, Zimmer A, Chiou LC. Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons. Nat Commun 2016;7:12199. [PMID: 27448020 DOI: 10.1038/ncomms12199] [Cited by in Crossref: 60] [Cited by in F6Publishing: 55] [Article Influence: 10.0] [Reference Citation Analysis]
63 Odegaard KE, Pendyala G, Yelamanchili SV. Generational Effects of Opioid Exposure. Encyclopedia 2021;1:99-114. [DOI: 10.3390/encyclopedia1010012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
64 Olney JJ, Navarro M, Thiele TE. Binge-like consumption of ethanol and other salient reinforcers is blocked by orexin-1 receptor inhibition and leads to a reduction of hypothalamic orexin immunoreactivity. Alcohol Clin Exp Res 2015;39:21-9. [PMID: 25623402 DOI: 10.1111/acer.12591] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 6.2] [Reference Citation Analysis]
65 Lei K, Wegner SA, Yu JH, Hopf FW. Orexin-1 receptor blockade suppresses compulsive-like alcohol drinking in mice. Neuropharmacology 2016;110:431-7. [PMID: 27523303 DOI: 10.1016/j.neuropharm.2016.08.008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
66 Valdivia S, Patrone A, Reynaldo M, Perello M. Acute high fat diet consumption activates the mesolimbic circuit and requires orexin signaling in a mouse model. PLoS One 2014;9:e87478. [PMID: 24466352 DOI: 10.1371/journal.pone.0087478] [Cited by in Crossref: 66] [Cited by in F6Publishing: 62] [Article Influence: 8.3] [Reference Citation Analysis]
67 Pantazis CB, James MH, O'Connor S, Shin N, Aston-Jones G. Orexin-1 receptor signaling in ventral tegmental area mediates cue-driven demand for cocaine. Neuropsychopharmacology 2021. [PMID: 34635803 DOI: 10.1038/s41386-021-01173-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Rainero I, Rubino E, Paemeleire K, Gai A, Vacca A, De Martino P, Gentile S, Sarchielli P, Pinessi L. Genes and primary headaches: discovering new potential therapeutic targets. J Headache Pain 2013;14:61. [PMID: 23848401 DOI: 10.1186/1129-2377-14-61] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
69 Czora-poczwardowska K, Kujawski R, Słyńko-krzyżostaniak J, Mikołajczak PŁ, Szulc M. Orexin receptor blockers: A tool for lowering alcohol intake and alcohol addictive behavior in the light of preclinical studies. Postępy Higieny i Medycyny Doświadczalnej 2021;75:959-69. [DOI: 10.2478/ahem-2021-0007] [Reference Citation Analysis]
70 Perrey DA, Zhang Y. Therapeutics development for addiction: Orexin-1 receptor antagonists. Brain Res 2020;1731:145922. [PMID: 30148984 DOI: 10.1016/j.brainres.2018.08.025] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
71 Olney JJ, Navarro M, Thiele TE. The Role of Orexin Signaling in the Ventral Tegmental Area and Central Amygdala in Modulating Binge-Like Ethanol Drinking Behavior. Alcohol Clin Exp Res 2017;41:551-61. [PMID: 28097729 DOI: 10.1111/acer.13336] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
72 Mereu M, Bonci A, Newman AH, Tanda G. The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders. Psychopharmacology (Berl) 2013;229:415-34. [PMID: 23934211 DOI: 10.1007/s00213-013-3232-4] [Cited by in Crossref: 88] [Cited by in F6Publishing: 68] [Article Influence: 9.8] [Reference Citation Analysis]
73 Matzeu A, Zamora-Martinez ER, Martin-Fardon R. The paraventricular nucleus of the thalamus is recruited by both natural rewards and drugs of abuse: recent evidence of a pivotal role for orexin/hypocretin signaling in this thalamic nucleus in drug-seeking behavior. Front Behav Neurosci 2014;8:117. [PMID: 24765071 DOI: 10.3389/fnbeh.2014.00117] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 6.1] [Reference Citation Analysis]
74 Zajo KN, Fadel JR, Burk JA. Orexin A-induced enhancement of attentional processing in rats: role of basal forebrain neurons. Psychopharmacology (Berl) 2016;233:639-47. [PMID: 26534765 DOI: 10.1007/s00213-015-4139-z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
75 Keefer SE, Cole S, Petrovich GD. Orexin/hypocretin receptor 1 signaling mediates Pavlovian cue-food conditioning and extinction. Physiol Behav 2016;162:27-36. [PMID: 26945612 DOI: 10.1016/j.physbeh.2016.02.042] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
76 Gentile TA, Simmons SJ, Barker DJ, Shaw JK, España RA, Muschamp JW. Suvorexant, an orexin/hypocretin receptor antagonist, attenuates motivational and hedonic properties of cocaine. Addict Biol 2018;23:247-55. [PMID: 28419646 DOI: 10.1111/adb.12507] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 7.2] [Reference Citation Analysis]
77 Anderson RI, Moorman DE, Becker HC. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb Exp Pharmacol 2018;248:473-503. [PMID: 29526023 DOI: 10.1007/164_2018_100] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
78 Hrabovszky E, Molnár CS, Borsay BÁ, Gergely P, Herczeg L, Liposits Z. Orexinergic input to dopaminergic neurons of the human ventral tegmental area. PLoS One 2013;8:e83029. [PMID: 24376626 DOI: 10.1371/journal.pone.0083029] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
79 Shukla C, Basheer R. Metabolic signals in sleep regulation: recent insights. Nat Sci Sleep 2016;8:9-20. [PMID: 26793010 DOI: 10.2147/NSS.S62365] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
80 Flores A, Maldonado R, Berrendero F. Cannabinoid-hypocretin cross-talk in the central nervous system: what we know so far. Front Neurosci 2013;7:256. [PMID: 24391536 DOI: 10.3389/fnins.2013.00256] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
81 Stinus L, Cador M, Caille S. Repeated episodes of heroin cause enduring alterations of circadian activity in protracted abstinence. Brain Sci 2012;2:421-33. [PMID: 24961201 DOI: 10.3390/brainsci2030421] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]