BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hughes ATL, Piggins HD. Feedback actions of locomotor activity to the circadian clock. Prog Brain Res 2012;199:305-36. [PMID: 22877673 DOI: 10.1016/B978-0-444-59427-3.00018-6] [Cited by in Crossref: 52] [Cited by in F6Publishing: 33] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 Gossan N, Boot-Handford R, Meng QJ. Ageing and osteoarthritis: a circadian rhythm connection. Biogerontology 2015;16:209-19. [PMID: 25078075 DOI: 10.1007/s10522-014-9522-3] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 3.4] [Reference Citation Analysis]
2 Oster H, Challet E, Ott V, Arvat E, de Kloet ER, Dijk DJ, Lightman S, Vgontzas A, Van Cauter E. The Functional and Clinical Significance of the 24-Hour Rhythm of Circulating Glucocorticoids. Endocr Rev 2017;38:3-45. [PMID: 27749086 DOI: 10.1210/er.2015-1080] [Cited by in Crossref: 176] [Cited by in F6Publishing: 152] [Article Influence: 35.2] [Reference Citation Analysis]
3 Hughes AT, Piggins HD. Disruption of daily rhythms in gene expression: the importance of being synchronised. Bioessays 2014;36:644-8. [PMID: 24832865 DOI: 10.1002/bies.201400043] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
4 Fiuza FP, Silva KD, Pessoa RA, Pontes AL, Cavalcanti RL, Pires RS, Soares JG, Nascimento Júnior ES, Costa MS, Engelberth RC, Cavalcante JS. Age-related changes in neurochemical components and retinal projections of rat intergeniculate leaflet. Age (Dordr) 2016;38:4. [PMID: 26718202 DOI: 10.1007/s11357-015-9867-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
5 Young CJ, Lyons D, Piggins HD. Circadian Influences on the Habenula and Their Potential Contribution to Neuropsychiatric Disorders. Front Behav Neurosci 2022;15:815700. [DOI: 10.3389/fnbeh.2021.815700] [Reference Citation Analysis]
6 Ji Q, Zheng Y, Zhang G, Hu Y, Fan X, Hou Y, Wen L, Li L, Xu Y, Wang Y, Tang F. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Ann Rheum Dis 2019;78:100-10. [PMID: 30026257 DOI: 10.1136/annrheumdis-2017-212863] [Cited by in Crossref: 77] [Cited by in F6Publishing: 73] [Article Influence: 19.3] [Reference Citation Analysis]
7 Michel S, Meijer JH. From clock to functional pacemaker. Eur J Neurosci 2020;51:482-93. [PMID: 30793396 DOI: 10.1111/ejn.14388] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
8 Belle MD, Piggins HD. Circadian regulation of mouse suprachiasmatic nuclei neuronal states shapes responses to orexin. Eur J Neurosci 2017;45:723-32. [PMID: 27987373 DOI: 10.1111/ejn.13506] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
9 Robbers Y, Tersteeg MMH, Meijer JH, Coomans CP. Group housing and social dominance hierarchy affect circadian activity patterns in mice. R Soc Open Sci 2021;8:201985. [PMID: 33972875 DOI: 10.1098/rsos.201985] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Belle MD, Hughes AT, Bechtold DA, Cunningham P, Pierucci M, Burdakov D, Piggins HD. Acute suppressive and long-term phase modulation actions of orexin on the mammalian circadian clock. J Neurosci 2014;34:3607-21. [PMID: 24599460 DOI: 10.1523/JNEUROSCI.3388-13.2014] [Cited by in Crossref: 81] [Cited by in F6Publishing: 34] [Article Influence: 10.1] [Reference Citation Analysis]
11 Salaberry NL, Mendoza J. Insights into the Role of the Habenular Circadian Clock in Addiction. Front Psychiatry 2015;6:179. [PMID: 26779042 DOI: 10.3389/fpsyt.2015.00179] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
12 Braun MC, Castillo-Ruiz A, Indic P, Jung DY, Kim JK, Brown RH Jr, Swoap SJ, Schwartz WJ. Defective daily temperature regulation in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 2019;311:305-12. [PMID: 30031021 DOI: 10.1016/j.expneurol.2018.07.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
13 Falup-Pecurariu C, Diaconu Ș, Țînț D, Falup-Pecurariu O. Neurobiology of sleep (Review). Exp Ther Med 2021;21:272. [PMID: 33603879 DOI: 10.3892/etm.2021.9703] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Gu C, Coomans CP, Hu K, Scheer FA, Stanley HE, Meijer JH. Lack of exercise leads to significant and reversible loss of scale invariance in both aged and young mice. Proc Natl Acad Sci U S A 2015;112:2320-4. [PMID: 25675516 DOI: 10.1073/pnas.1424706112] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 4.7] [Reference Citation Analysis]
15 Vijaya Shankara J, Mistlberger RE, Antle MC. Anticipation of Scheduled Feeding in BTBR Mice Reveals Independence and Interactions Between the Light- and Food-Entrainable Circadian Clocks. Front Integr Neurosci 2022;16:896200. [DOI: 10.3389/fnint.2022.896200] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Wolff CA, Esser KA. Exercise Timing and Circadian Rhythms. Curr Opin Physiol 2019;10:64-9. [PMID: 31938759 DOI: 10.1016/j.cophys.2019.04.020] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
17 Chrobok L, Northeast RC, Myung J, Cunningham PS, Petit C, Piggins HD. Timekeeping in the hindbrain: a multi-oscillatory circadian centre in the mouse dorsal vagal complex. Commun Biol 2020;3:225. [PMID: 32385329 DOI: 10.1038/s42003-020-0960-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
18 Hughes AT, Croft CL, Samuels RE, Myung J, Takumi T, Piggins HD. Constant light enhances synchrony among circadian clock cells and promotes behavioral rhythms in VPAC2-signaling deficient mice. Sci Rep 2015;5:14044. [PMID: 26370467 DOI: 10.1038/srep14044] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
19 Romanella SM, Roe D, Tatti E, Cappon D, Paciorek R, Testani E, Rossi A, Rossi S, Santarnecchi E. The Sleep Side of Aging and Alzheimer's Disease. Sleep Med 2021;77:209-25. [PMID: 32912799 DOI: 10.1016/j.sleep.2020.05.029] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Hughes ATL, Samuels RE, Baño-Otálora B, Belle MDC, Wegner S, Guilding C, Northeast RC, Loudon ASI, Gigg J, Piggins HD. Timed daily exercise remodels circadian rhythms in mice. Commun Biol 2021;4:761. [PMID: 34145388 DOI: 10.1038/s42003-021-02239-2] [Reference Citation Analysis]
21 Riljak V, Janisova K, Myslivecek J. Lack of M4 muscarinic receptors in the striatum, thalamus and intergeniculate leaflet alters the biological rhythm of locomotor activity in mice. Brain Struct Funct 2020;225:1615-29. [PMID: 32409918 DOI: 10.1007/s00429-020-02082-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Valuskova P, Forczek ST, Farar V, Myslivecek J. The deletion of M4 muscarinic receptors increases motor activity in females in the dark phase. Brain Behav 2018;8:e01057. [PMID: 29978954 DOI: 10.1002/brb3.1057] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
23 Sasaki H, Hattori Y, Ikeda Y, Kamagata M, Iwami S, Yasuda S, Tahara Y, Shibata S. Forced rather than voluntary exercise entrains peripheral clocks via a corticosterone/noradrenaline increase in PER2::LUC mice. Sci Rep 2016;6:27607. [PMID: 27271267 DOI: 10.1038/srep27607] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 7.0] [Reference Citation Analysis]
24 Wegner S, Belle MDC, Hughes ATL, Diekman CO, Piggins HD. Delayed Cryptochrome Degradation Asymmetrically Alters the Daily Rhythm in Suprachiasmatic Clock Neuron Excitability. J Neurosci 2017;37:7824-36. [PMID: 28698388 DOI: 10.1523/JNEUROSCI.0691-17.2017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
25 Garrigos D, Martínez-Morga M, Toval A, Kutsenko Y, Barreda A, Do Couto BR, Navarro-Mateu F, Ferran JL. A Handful of Details to Ensure the Experimental Reproducibility on the FORCED Running Wheel in Rodents: A Systematic Review. Front Endocrinol (Lausanne) 2021;12:638261. [PMID: 34040580 DOI: 10.3389/fendo.2021.638261] [Reference Citation Analysis]
26 Fifel K, Videnovic A. Chronotherapies for Parkinson's disease. Prog Neurobiol 2019;174:16-27. [PMID: 30658126 DOI: 10.1016/j.pneurobio.2019.01.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
27 Jha PK, Bouâouda H, Gourmelen S, Dumont S, Fuchs F, Goumon Y, Bourgin P, Kalsbeek A, Challet E. Sleep Deprivation and Caffeine Treatment Potentiate Photic Resetting of the Master Circadian Clock in a Diurnal Rodent. J Neurosci 2017;37:4343-58. [PMID: 28320839 DOI: 10.1523/JNEUROSCI.3241-16.2017] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 2.4] [Reference Citation Analysis]
28 Deurveilher S, Ko KR, Saumure BSC, Robertson GS, Rusak B, Semba K. Altered circadian activity and sleep/wake rhythms in the stable tubule only polypeptide (STOP) null mouse model of schizophrenia. Sleep 2021;44:zsaa237. [PMID: 33186470 DOI: 10.1093/sleep/zsaa237] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Bano-Otalora B, Madrid JA, Rol MA. Melatonin alleviates circadian system disruption induced by chronic shifts of the light-dark cycle in Octodon degus. J Pineal Res 2020;68:e12619. [PMID: 31677295 DOI: 10.1111/jpi.12619] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
30 Bano-Otalora B, Moye MJ, Brown T, Lucas RJ, Diekman CO, Belle MD. Daily electrical activity in the master circadian clock of a diurnal mammal. Elife 2021;10:e68179. [PMID: 34845984 DOI: 10.7554/eLife.68179] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Gumarova L, Farah Z, Tyutenova A, Gumarova Z, Sackett-lundeen L, Kazlausky T, Cornelissen Guillaume G. Comparative analysis of circadian rhythms of hemodynamics and physical activity. Biological Rhythm Research. [DOI: 10.1080/09291016.2021.1922827] [Reference Citation Analysis]
32 Buijink MR, Michel S. A multi-level assessment of the bidirectional relationship between aging and the circadian clock. J Neurochem 2021;157:73-94. [PMID: 33370457 DOI: 10.1111/jnc.15286] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Belle MD. Circadian Tick-Talking Across the Neuroendocrine System and Suprachiasmatic Nuclei Circuits: The Enigmatic Communication Between the Molecular and Electrical Membrane Clocks. J Neuroendocrinol 2015;27:567-76. [PMID: 25845396 DOI: 10.1111/jne.12279] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
34 Gossan N, Zeef L, Hensman J, Hughes A, Bateman JF, Rowley L, Little CB, Piggins HD, Rattray M, Boot-Handford RP, Meng QJ. The circadian clock in murine chondrocytes regulates genes controlling key aspects of cartilage homeostasis. Arthritis Rheum 2013;65:2334-45. [PMID: 23896777 DOI: 10.1002/art.38035] [Cited by in Crossref: 82] [Cited by in F6Publishing: 77] [Article Influence: 9.1] [Reference Citation Analysis]
35 Myslivecek J, Farar V, Valuskova P. M(4) muscarinic receptors and locomotor activity regulation. Physiol Res 2017;66:S443-55. [PMID: 29355372 DOI: 10.33549/physiolres.933796] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
36 Morgan JA, Corrigan F, Baune BT. Effects of physical exercise on central nervous system functions: a review of brain region specific adaptations. J Mol Psychiatry 2015;3:3. [PMID: 26064521 DOI: 10.1186/s40303-015-0010-8] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 7.9] [Reference Citation Analysis]
37 Shelton J, Yun S, Losee Olson S, Turek F, Bonaventure P, Dvorak C, Lovenberg T, Dugovic C. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity. Front Behav Neurosci 2014;8:453. [PMID: 25642174 DOI: 10.3389/fnbeh.2014.00453] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]