BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Oseguera-toledo ME, González de Mejía E, Reynoso-camacho R, Cardador-martínez A, Amaya-llano SL. Proteins and bioactive peptides: Mechanisms of action on diabetes management. Nutrafoods 2014;13:147-57. [DOI: 10.1007/s13749-014-0052-z] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 4.7] [Reference Citation Analysis]
Number Citing Articles
1 Liao H, Tzen JTC. The Potential Role of Cyclopeptides from Pseudostellaria heterophylla, Linum usitatissimum and Drymaria diandra, and Peptides Derived from Heterophyllin B as Dipeptidyl Peptidase IV Inhibitors for the Treatment of Type 2 Diabetes: An In Silico Study. Metabolites 2022;12:387. [DOI: 10.3390/metabo12050387] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Santos-Hernández M, Cermeño M, Recio I, FitzGerald RJ. In vitro dipeptidyl peptidase IV inhibitory activity and in situ insulinotropic activity of milk and egg white protein digests. Food Funct 2021;12:12372-80. [PMID: 34854453 DOI: 10.1039/d1fo00641j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Ramírez Fuentes L, Richard C, Chen L. Sequential alcalase and flavourzyme treatment for preparation of α-amylase, α-glucosidase, and dipeptidyl peptidase (DPP)-IV inhibitory peptides from oat protein. Journal of Functional Foods 2021;87:104829. [DOI: 10.1016/j.jff.2021.104829] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
4 Indrati R. Bioactive Peptides from Legumes and Their Bioavailability. Legumes - Volume 2 [Working Title] 2021. [DOI: 10.5772/intechopen.99979] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Harnedy-rothwell PA, Mclaughlin CM, Le Gouic AV, Mullen C, Parthsarathy V, Allsopp PJ, Mcsorley EM, Fitzgerald RJ, O’harte FPM. In Vitro and In Vivo Effects of Palmaria palmata Derived Peptides on Glucose Metabolism. Int J Pept Res Ther 2021;27:1667-1676. [DOI: 10.1007/s10989-021-10199-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Toldrá F, Mora L. Enzymatic mechanisms for the generation of bioactive peptides. Biologically Active Peptides 2021. [DOI: 10.1016/b978-0-12-821389-6.00031-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Shivanna SK, Nataraj BH. Revisiting therapeutic and toxicological fingerprints of milk-derived bioactive peptides: An overview. Food Bioscience 2020;38:100771. [DOI: 10.1016/j.fbio.2020.100771] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
8 Banerjee M, Khursheed R, Yadav AK, Singh SK, Gulati M, Pandey DK, Prabhakar PK, Kumar R, Porwal O, Awasthi A, Kumari Y, Kaur G, Ayinkamiye C, Prashar R, Mankotia D, Pandey NK. A Systematic Review on Synthetic Drugs and Phytopharmaceuticals Used to Manage Diabetes. Curr Diabetes Rev 2020;16:340-56. [PMID: 31438829 DOI: 10.2174/1573399815666190822165141] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
9 de Fátima Garcia B, de Barros M, de Souza Rocha T. Bioactive peptides from beans with the potential to decrease the risk of developing noncommunicable chronic diseases. Crit Rev Food Sci Nutr 2021;61:2003-21. [PMID: 32478570 DOI: 10.1080/10408398.2020.1768047] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
10 Toldrá F, Gallego M, Reig M, Aristoy M, Mora L. Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity. J Agric Food Chem 2020;68:12842-55. [DOI: 10.1021/acs.jafc.9b08297] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 19.0] [Reference Citation Analysis]
11 Harnedy-Rothwell PA, McLaughlin CM, O'Keeffe MB, Le Gouic AV, Allsopp PJ, McSorley EM, Sharkey S, Whooley J, McGovern B, O'Harte FPM, FitzGerald RJ. Identification and characterisation of peptides from a boarfish (Capros aper) protein hydrolysate displaying in vitro dipeptidyl peptidase-IV (DPP-IV) inhibitory and insulinotropic activity. Food Res Int 2020;131:108989. [PMID: 32247474 DOI: 10.1016/j.foodres.2020.108989] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 18.5] [Reference Citation Analysis]
12 Wen C, Zhang J, Duan Y, Zhang H, Ma H. A Mini‐Review on Brewer's Spent Grain Protein: Isolation, Physicochemical Properties, Application of Protein, and Functional Properties of Hydrolysates. Journal of Food Science 2019;84:3330-40. [DOI: 10.1111/1750-3841.14906] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]
13 Castañeda-pérez E, Jiménez-morales K, Quintal-novelo C, Moo-puc R, Chel-guerrero L, Betancur-ancona D. Enzymatic protein hydrolysates and ultrafiltered peptide fractions from Cowpea Vigna unguiculata L bean with in vitro antidiabetic potential. J IRAN CHEM SOC 2019;16:1773-81. [DOI: 10.1007/s13738-019-01651-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
14 Mora L, Gallego M, Aristoy M, Reig M, Toldrá F. Bioactive peptides. Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds 2019. [DOI: 10.1016/b978-0-12-814174-8.00012-3] [Reference Citation Analysis]
15 Mann B, Athira S, Sharma R, Kumar R, Sarkar P. Bioactive Peptides from Whey Proteins. Whey Proteins 2019. [DOI: 10.1016/b978-0-12-812124-5.00015-1] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
16 Tovar-pérez EG, Lugo-radillo A, Aguilera-aguirre S. Amaranth grain as a potential source of biologically active peptides: a review of their identification, production, bioactivity, and characterization. Food Reviews International 2018;35:221-45. [DOI: 10.1080/87559129.2018.1514625] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
17 Marciniak A, Suwal S, Naderi N, Pouliot Y, Doyen A. Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends in Food Science & Technology 2018;80:187-98. [DOI: 10.1016/j.tifs.2018.08.013] [Cited by in Crossref: 53] [Cited by in F6Publishing: 28] [Article Influence: 13.3] [Reference Citation Analysis]
18 Chukwuma CI, Islam MS, Amonsou EO. A comparative study on the physicochemical, anti-oxidative, anti-hyperglycemic and anti-lipidemic properties of amadumbe ( Colocasia esculenta ) and okra ( Abelmoschus esculentus ) mucilage. J Food Biochem 2018;42:e12601. [DOI: 10.1111/jfbc.12601] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
19 Harnedy PA, Parthsarathy V, McLaughlin CM, O'Keeffe MB, Allsopp PJ, McSorley EM, O'Harte FPM, FitzGerald RJ. Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides. Food Res Int 2018;106:598-606. [PMID: 29579965 DOI: 10.1016/j.foodres.2018.01.025] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 15.0] [Reference Citation Analysis]
20 Harnedy PA, Parthsarathy V, Mclaughlin CM, O'keeffe MB, Allsopp PJ, Mcsorley EM, O'harte FP, Fitzgerald RJ. Blue whiting (Micromesistius poutassou) muscle protein hydrolysate with in vitro and in vivo antidiabetic properties. Journal of Functional Foods 2018;40:137-45. [DOI: 10.1016/j.jff.2017.10.045] [Cited by in Crossref: 42] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
21 Toldrá F, Reig M, Aristoy MC, Mora L. Generation of bioactive peptides during food processing. Food Chem 2018;267:395-404. [PMID: 29934183 DOI: 10.1016/j.foodchem.2017.06.119] [Cited by in Crossref: 149] [Cited by in F6Publishing: 156] [Article Influence: 29.8] [Reference Citation Analysis]
22 Mojica L, Gonzalez de Mejia E, Granados-silvestre MÁ, Menjivar M. Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches. Journal of Functional Foods 2017;31:274-86. [DOI: 10.1016/j.jff.2017.02.006] [Cited by in Crossref: 52] [Cited by in F6Publishing: 58] [Article Influence: 10.4] [Reference Citation Analysis]
23 Mojica L, de Mejía EG. Optimization of enzymatic production of anti-diabetic peptides from black bean (Phaseolus vulgaris L.) proteins, their characterization and biological potential. Food Funct 2016;7:713-27. [PMID: 26824775 DOI: 10.1039/c5fo01204j] [Cited by in Crossref: 70] [Cited by in F6Publishing: 73] [Article Influence: 11.7] [Reference Citation Analysis]
24 Oseguera Toledo ME, Gonzalez de Mejia E, Sivaguru M, Amaya-llano SL. Common bean ( Phaseolus vulgaris L.) protein-derived peptides increased insulin secretion, inhibited lipid accumulation, increased glucose uptake and reduced the phosphatase and tensin homologue activation in vitro. Journal of Functional Foods 2016;27:160-77. [DOI: 10.1016/j.jff.2016.09.001] [Cited by in Crossref: 35] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
25 Nongonierma AB, FitzGerald RJ. Milk proteins as a source of tryptophan-containing bioactive peptides. Food Funct 2015;6:2115-27. [PMID: 26027501 DOI: 10.1039/c5fo00407a] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 7.7] [Reference Citation Analysis]
26 Oseguera-toledo ME, Gonzalez de Mejia E, Amaya-llano SL. Hard-to-cook bean ( Phaseolus vulgaris L.) proteins hydrolyzed by alcalase and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress. Food Research International 2015;76:839-51. [DOI: 10.1016/j.foodres.2015.07.046] [Cited by in Crossref: 73] [Cited by in F6Publishing: 77] [Article Influence: 10.4] [Reference Citation Analysis]
27 Nongonierma AB, Fitzgerald RJ. The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A Review. Journal of Functional Foods 2015;17:640-56. [DOI: 10.1016/j.jff.2015.06.021] [Cited by in Crossref: 149] [Cited by in F6Publishing: 152] [Article Influence: 21.3] [Reference Citation Analysis]