BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Castañeda-pérez E, Jiménez-morales K, Quintal-novelo C, Moo-puc R, Chel-guerrero L, Betancur-ancona D. Enzymatic protein hydrolysates and ultrafiltered peptide fractions from Cowpea Vigna unguiculata L bean with in vitro antidiabetic potential. J IRAN CHEM SOC 2019;16:1773-81. [DOI: 10.1007/s13738-019-01651-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Karami Z, Duangmal K. Health Promoting and Functional Activities of Peptides from Vigna Bean and Common Bean Hydrolysates: Process to Increase Activities and Challenges. Food Reviews International. [DOI: 10.1080/87559129.2022.2122988] [Reference Citation Analysis]
2 Rivero-pino F, Espejo-carpio FJ, Guadix EM. Unravelling the α-glucosidase inhibitory properties of chickpea protein by enzymatic hydrolysis and in silico analysis. Food Bioscience 2021;44:101328. [DOI: 10.1016/j.fbio.2021.101328] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
3 Acevedo Martínez KA, Gonzalezde Mejia E. Comparison of five chickpea varieties, optimization of hydrolysates production and evaluation of biomarkers for type 2 diabetes. Food Res Int 2021;147:110572. [PMID: 34399545 DOI: 10.1016/j.foodres.2021.110572] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
4 Castañeda-pérez E, Jiménez-morales K, Castellanos-ruelas A, Chel-guerrero L, Betancur-ancona D. Antidiabetic Potential of Protein Hydrolysates and Peptide Fractions from Lima Bean (Phaseolus lunatus L): An In Vitro Study. Int J Pept Res Ther 2021;27:1979-88. [DOI: 10.1007/s10989-021-10226-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
5 Rivero-Pino F, Guadix A, Guadix EM. Identification of novel dipeptidyl peptidase IV and α-glucosidase inhibitory peptides from Tenebrio molitor. Food Funct 2021;12:873-80. [PMID: 33410437 DOI: 10.1039/d0fo02696d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
6 Amigo-benavent M, Khalesi M, Thapa G, Fitzgerald RJ. Methodologies for bioactivity assay: biochemical study. Biologically Active Peptides 2021. [DOI: 10.1016/b978-0-12-821389-6.00030-3] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020;165:2143-96. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Cited by in Crossref: 72] [Cited by in F6Publishing: 58] [Article Influence: 24.0] [Reference Citation Analysis]
8 Moreno-Valdespino CA, Luna-Vital D, Camacho-Ruiz RM, Mojica L. Bioactive proteins and phytochemicals from legumes: Mechanisms of action preventing obesity and type-2 diabetes. Food Res Int 2020;130:108905. [PMID: 32156360 DOI: 10.1016/j.foodres.2019.108905] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 15.3] [Reference Citation Analysis]