BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Creus-Muncunill J, Ehrlich ME. Cell-Autonomous and Non-cell-Autonomous Pathogenic Mechanisms in Huntington's Disease: Insights from In Vitro and In Vivo Models. Neurotherapeutics 2019;16:957-78. [PMID: 31529216 DOI: 10.1007/s13311-019-00782-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 Zhang L, Liu Y, Lu Y, Wang G. Targeting epigenetics as a promising therapeutic strategy for treatment of neurodegenerative diseases. Biochemical Pharmacology 2022;206:115295. [DOI: 10.1016/j.bcp.2022.115295] [Reference Citation Analysis]
2 Liu C, Fu Z, Wu S, Wang X, Zhang S, Chu C, Hong Y, Wu W, Chen S, Jiang Y, Wu Y, Song Y, Liu Y, Guo X. Mitochondrial HSF1 triggers mitochondrial dysfunction and neurodegeneration in Huntington's disease. EMBO Mol Med. [DOI: 10.15252/emmm.202215851] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
3 Serranilla M, Woodin MA. Striatal Chloride Dysregulation and Impaired GABAergic Signaling Due to Cation-Chloride Cotransporter Dysfunction in Huntington’s Disease. Front Cell Neurosci 2022;15:817013. [DOI: 10.3389/fncel.2021.817013] [Reference Citation Analysis]
4 Loy CT, Hannan AJ. Neurotoxicity in Huntington Disease. Handbook of Neurotoxicity 2022. [DOI: 10.1007/978-3-030-71519-9_140-1] [Reference Citation Analysis]
5 Loy CT, Hannan AJ. Neurotoxicity in Huntington Disease. Handbook of Neurotoxicity 2022. [DOI: 10.1007/978-3-031-15080-7_140] [Reference Citation Analysis]
6 Pérez-sisqués L, Solana-balaguer J, Campoy-campos G, Martín-flores N, Sancho-balsells A, Vives-isern M, Soler-palazón F, Garcia-forn M, Masana M, Alberch J, Pérez-navarro E, Giralt A, Malagelada C. RTP801/REDD1 Is Involved in Neuroinflammation and Modulates Cognitive Dysfunction in Huntington’s Disease. Biomolecules 2022;12:34. [DOI: 10.3390/biom12010034] [Reference Citation Analysis]
7 Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington's Disease. Int J Mol Sci 2021;22:12499. [PMID: 34830381 DOI: 10.3390/ijms222212499] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Bakels HS, Roos RAC, van Roon-Mom WMC, de Bot ST. Juvenile-Onset Huntington Disease Pathophysiology and Neurodevelopment: A Review. Mov Disord 2021. [PMID: 34636452 DOI: 10.1002/mds.28823] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
9 Sergeeva EG, Rosenberg PA, Benowitz LI. Non-Cell-Autonomous Regulation of Optic Nerve Regeneration by Amacrine Cells. Front Cell Neurosci 2021;15:666798. [PMID: 33935656 DOI: 10.3389/fncel.2021.666798] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
10 Eshraghi M, Karunadharma PP, Blin J, Shahani N, Ricci EP, Michel A, Urban NT, Galli N, Sharma M, Ramírez-Jarquín UN, Florescu K, Hernandez J, Subramaniam S. Mutant Huntingtin stalls ribosomes and represses protein synthesis in a cellular model of Huntington disease. Nat Commun 2021;12:1461. [PMID: 33674575 DOI: 10.1038/s41467-021-21637-y] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 19.5] [Reference Citation Analysis]
11 Joviano-Santos JV, Valadão PAC, Magalhães-Gomes MPS, Fernandes LF, Diniz DM, Machado TCG, Soares KB, Ladeira MS, Miranda AS, Massensini AR, Gomez MV, Guatimosim C. Protective effect of a spider recombinant toxin in a murine model of Huntington's disease. Neuropeptides 2021;85:102111. [PMID: 33333486 DOI: 10.1016/j.npep.2020.102111] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
12 Aladdin A, Yao Y, Yang C, Kahlert G, Ghani M, Király N, Boratkó A, Uray K, Dittmar G, Tar K. The Proteasome Activators Blm10/PA200 Enhance the Proteasomal Degradation of N-Terminal Huntingtin. Biomolecules 2020;10:E1581. [PMID: 33233776 DOI: 10.3390/biom10111581] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
13 Cepeda C, Levine MS. Synaptic Dysfunction in Huntington's Disease: Lessons from Genetic Animal Models. Neuroscientist 2020;:1073858420972662. [PMID: 33198566 DOI: 10.1177/1073858420972662] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
14 Lin CW, Fan CH, Chang YC, Hsieh-Li HM. ERK activation precedes Purkinje cell loss in mice with Spinocerebellar ataxia type 17. Neurosci Lett 2020;738:135337. [PMID: 32877710 DOI: 10.1016/j.neulet.2020.135337] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Ellerby LM. Repeat Expansion Disorders: Mechanisms and Therapeutics. Neurotherapeutics 2019;16:924-7. [PMID: 31907874 DOI: 10.1007/s13311-019-00823-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
16 Vitet H, Brandt V, Saudou F. Traffic signaling: new functions of huntingtin and axonal transport in neurological disease. Current Opinion in Neurobiology 2020;63:122-30. [DOI: 10.1016/j.conb.2020.04.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
17 Kim A, García-García E, Straccia M, Comella-Bolla A, Miguez A, Masana M, Alberch J, Canals JM, Rodríguez MJ. Reduced Fractalkine Levels Lead to Striatal Synaptic Plasticity Deficits in Huntington's Disease. Front Cell Neurosci 2020;14:163. [PMID: 32625064 DOI: 10.3389/fncel.2020.00163] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
18 Fernández-García S, Orlandi JG, García-Díaz Barriga GA, Rodríguez MJ, Masana M, Soriano J, Alberch J. Deficits in coordinated neuronal activity and network topology are striatal hallmarks in Huntington's disease. BMC Biol 2020;18:58. [PMID: 32466798 DOI: 10.1186/s12915-020-00794-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
19 Moos WH, Faller DV, Glavas IP, Harpp DN, Kanara I, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG, Zamboni RJ, Kodukula K, Chen X. Klotho Pathways, Myelination Disorders, Neurodegenerative Diseases, and Epigenetic Drugs. Biores Open Access 2020;9:94-105. [PMID: 32257625 DOI: 10.1089/biores.2020.0004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
20 Hopp SC. Targeting microglia L-type voltage-dependent calcium channels for the treatment of central nervous system disorders. J Neurosci Res 2021;99:141-62. [PMID: 31997405 DOI: 10.1002/jnr.24585] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
21 Werner CT, Williams CJ, Fermelia MR, Lin DT, Li Y. Circuit Mechanisms of Neurodegenerative Diseases: A New Frontier With Miniature Fluorescence Microscopy. Front Neurosci 2019;13:1174. [PMID: 31736701 DOI: 10.3389/fnins.2019.01174] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]