BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ehrlich ME. Huntington's disease and the striatal medium spiny neuron: cell-autonomous and non-cell-autonomous mechanisms of disease. Neurotherapeutics 2012;9:270-84. [PMID: 22441874 DOI: 10.1007/s13311-012-0112-2] [Cited by in Crossref: 90] [Cited by in F6Publishing: 99] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Stoebner ZA, Hett K, Lyu I, Johnson H, Paulsen JS, Long JD, Oguz I. Comprehensive shape analysis of the cortex in Huntington's disease. Human Brain Mapping 2022. [DOI: 10.1002/hbm.26125] [Reference Citation Analysis]
2 Albekairi TH, Kamra A, Bhardwaj S, Mehan S, Giri A, Suri M, Alshammari A, Alharbi M, Alasmari AF, Narula AS, Kalfin R. Beta-Boswellic Acid Reverses 3-Nitropropionic Acid-Induced Molecular, Mitochondrial, and Histopathological Defects in Experimental Rat Model of Huntington’s Disease. Biomedicines 2022;10:2866. [DOI: 10.3390/biomedicines10112866] [Reference Citation Analysis]
3 Chia K, Klingseisen A, Sieger D, Priller J. Zebrafish as a model organism for neurodegenerative disease. Front Mol Neurosci 2022;15:940484. [DOI: 10.3389/fnmol.2022.940484] [Reference Citation Analysis]
4 Hassan SSU, Samanta S, Dash R, Karpiński TM, Habibi E, Sadiq A, Ahmadi A, Bunagu S. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front Pharmacol 2022;13:1015835. [DOI: 10.3389/fphar.2022.1015835] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Ayeni EA, Aldossary AM, Ayejoto DA, Gbadegesin LA, Alshehri AA, Alfassam HA, Afewerky HK, Almughem FA, Bello SM, Tawfik EA. Neurodegenerative Diseases: Implications of Environmental and Climatic Influences on Neurotransmitters and Neuronal Hormones Activities. Int J Environ Res Public Health 2022;19:12495. [PMID: 36231792 DOI: 10.3390/ijerph191912495] [Reference Citation Analysis]
6 Kumar V, Singh C, Singh A. Oral administration of hydroalcoholic extract of Centella asiatica ameliorates neurotoxicity and neurobehavioral deficits in 3-nitropropionic acid-induced Huntington's like symptoms in adult zebrafish. Rejuvenation Res 2022. [PMID: 36150031 DOI: 10.1089/rej.2022.0036] [Reference Citation Analysis]
7 Pepe G, Capocci L, Marracino F, Realini N, Lenzi P, Martinello K, Bovier TF, Bichell TJ, Scarselli P, Di Cicco C, Bowman AB, Digilio FA, Fucile S, Fornai F, Armirotti A, Parlato R, Di Pardo A, Maglione V. Treatment with THI, an inhibitor of sphingosine-1-phosphate lyase, modulates glycosphingolipid metabolism and results therapeutically effective in experimental models of Huntington's disease. Mol Ther 2022:S1525-0016(22)00558-5. [PMID: 36116006 DOI: 10.1016/j.ymthe.2022.09.004] [Reference Citation Analysis]
8 G. Brown T, Chen L. Neuropathology of Huntington’s Disease. From Pathophysiology to Treatment of Huntington's Disease [Working Title] 2022. [DOI: 10.5772/intechopen.106664] [Reference Citation Analysis]
9 Subramaniam S. Striatal Induction and Spread of the Huntington’s Disease Protein: A Novel Rhes Route. JHD 2022. [DOI: 10.3233/jhd-220548] [Reference Citation Analysis]
10 Wenceslau CV, de Souza DM, Mambelli-lisboa NC, Ynoue LH, Araldi RP, da Silva JM, Pagani E, Haddad MS, Kerkis I. Restoration of BDNF, DARPP32, and D2R Expression Following Intravenous Infusion of Human Immature Dental Pulp Stem Cells in Huntington’s Disease 3-NP Rat Model. Cells 2022;11:1664. [DOI: 10.3390/cells11101664] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Novati A, Nguyen HP, Schulze-hentrich J. Environmental stimulation in Huntington disease patients and animal models. Neurobiology of Disease 2022. [DOI: 10.1016/j.nbd.2022.105725] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Ni A, Ernst C. Evidence That Substantia Nigra Pars Compacta Dopaminergic Neurons Are Selectively Vulnerable to Oxidative Stress Because They Are Highly Metabolically Active. Front Cell Neurosci 2022;16:826193. [DOI: 10.3389/fncel.2022.826193] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Palminha NM, Dos Santos Souza C, Griffin J, Liao C, Ferraiuolo L, El-khamisy SF. Defective repair of topoisomerase I induced chromosomal damage in Huntington’s disease. Cell Mol Life Sci 2022;79. [DOI: 10.1007/s00018-022-04204-6] [Reference Citation Analysis]
14 Bartley OJM, Lelos MJ, Gray WP, Rosser AE. Do foetal transplant studies continue to be justified in Huntington's disease? Neuronal Signal 2021;5:NS20210019. [PMID: 34956650 DOI: 10.1042/NS20210019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Hu D, Liu Z, Qi X. Mitochondrial Quality Control Strategies: Potential Therapeutic Targets for Neurodegenerative Diseases? Front Neurosci 2021;15:746873. [PMID: 34867159 DOI: 10.3389/fnins.2021.746873] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
16 Islam J, So KH, Kc E, Moon HC, Kim A, Hyun SH, Kim S, Park YS. Transplantation of human embryonic stem cells alleviates motor dysfunction in AAV2-Htt171-82Q transfected rat model of Huntington's disease. Stem Cell Res Ther 2021;12:585. [PMID: 34809707 DOI: 10.1186/s13287-021-02653-7] [Reference Citation Analysis]
17 Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington's Disease. Int J Mol Sci 2021;22:12499. [PMID: 34830381 DOI: 10.3390/ijms222212499] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Salašová A, Degn NS, Paveliev M, Madsen NK, Benito SL, Casarotto P, Ovesen PL, Vestergaard B, Udrea AC, Kisiswa L, Woloszczuková L, Faress I, Nabavi S, Castrén E, Arévalo JC, Holm MM, Kjølby MF, Bølcho U, Nykjaer A. SorCS2 dynamically interacts with TrkB and GluN2B to control neurotransmission and Huntington’s disease progression.. [DOI: 10.1101/2021.11.03.466767] [Reference Citation Analysis]
19 Lange J, Wood-Kaczmar A, Ali A, Farag S, Ghosh R, Parker J, Casey C, Uno Y, Kunugi A, Ferretti P, Andre R, Tabrizi SJ. Mislocalization of Nucleocytoplasmic Transport Proteins in Human Huntington's Disease PSC-Derived Striatal Neurons. Front Cell Neurosci 2021;15:742763. [PMID: 34658796 DOI: 10.3389/fncel.2021.742763] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Ayeni EA, Gong Y, Yuan H, Hu Y, Bai X, Liao X. Medicinal plants for anti-neurodegenerative diseases in West Africa. J Ethnopharmacol 2021;:114468. [PMID: 34390796 DOI: 10.1016/j.jep.2021.114468] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
21 Kim A, Lalonde K, Truesdell A, Gomes Welter P, Brocardo PS, Rosenstock TR, Gil-Mohapel J. New Avenues for the Treatment of Huntington's Disease. Int J Mol Sci 2021;22:8363. [PMID: 34445070 DOI: 10.3390/ijms22168363] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
22 Buren C, Tu G, Raymond LA. Impaired Replenishment of Cortico-Striatal Synaptic Glutamate in Huntington's Disease Mouse Model. J Huntingtons Dis 2020;9:149-61. [PMID: 32310183 DOI: 10.3233/JHD-200400] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Schultz JL, van der Plas E, Langbehn DR, Conrad AL, Nopoulos PC. Age-Related Cognitive Changes as a Function of CAG Repeat in Child and Adolescent Carriers of Mutant Huntingtin. Ann Neurol 2021;89:1036-40. [PMID: 33521985 DOI: 10.1002/ana.26039] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
24 McMeekin LJ, Fox SN, Boas SM, Cowell RM. Dysregulation of PGC-1α-Dependent Transcriptional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells 2021;10:352. [PMID: 33572179 DOI: 10.3390/cells10020352] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
25 Wang XL, Feng ST, Wang ZZ, Chen NH, Zhang Y. Role of mitophagy in mitochondrial quality control: Mechanisms and potential implications for neurodegenerative diseases. Pharmacol Res 2021;165:105433. [PMID: 33454337 DOI: 10.1016/j.phrs.2021.105433] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
26 Sawant N, Reddy PH. Role of Phosphorylated Tau and Glucose Synthase Kinase 3 Beta in Huntington's Disease Progression. J Alzheimers Dis 2019;72:S177-91. [PMID: 31744007 DOI: 10.3233/JAD-190851] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
27 Fagiani F, Govoni S, Racchi M, Lanni C. The Peptidyl-prolyl Isomerase Pin1 in Neuronal Signaling: from Neurodevelopment to Neurodegeneration. Mol Neurobiol 2021;58:1062-73. [PMID: 33083964 DOI: 10.1007/s12035-020-02179-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
28 Creus-Muncunill J, Ehrlich ME. Cell-Autonomous and Non-cell-Autonomous Pathogenic Mechanisms in Huntington's Disease: Insights from In Vitro and In Vivo Models. Neurotherapeutics 2019;16:957-78. [PMID: 31529216 DOI: 10.1007/s13311-019-00782-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
29 Salado-Manzano C, Perpiña U, Straccia M, Molina-Ruiz FJ, Cozzi E, Rosser AE, Canals JM. Is the Immunological Response a Bottleneck for Cell Therapy in Neurodegenerative Diseases? Front Cell Neurosci 2020;14:250. [PMID: 32848630 DOI: 10.3389/fncel.2020.00250] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
30 Hegde RN, Chiki A, Petricca L, Martufi P, Arbez N, Mouchiroud L, Auwerx J, Landles C, Bates GP, Singh-Bains MK, Dragunow M, Curtis MA, Faull RL, Ross CA, Caricasole A, Lashuel HA. TBK1 phosphorylates mutant Huntingtin and suppresses its aggregation and toxicity in Huntington's disease models. EMBO J 2020;39:e104671. [PMID: 32757223 DOI: 10.15252/embj.2020104671] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
31 Miyazaki H, Yamanaka T, Oyama F, Kino Y, Kurosawa M, Yamada-Kurosawa M, Yamano R, Shimogori T, Hattori N, Nukina N. FACS-array-based cell purification yields a specific transcriptome of striatal medium spiny neurons in a murine Huntington disease model. J Biol Chem 2020;295:9768-85. [PMID: 32499373 DOI: 10.1074/jbc.RA120.012983] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
32 Schultz JL, Harshman LA, Langbehn DR, Nopoulos PC. Hypertension Is Associated With an Earlier Age of Onset of Huntington's Disease. Mov Disord 2020;35:1558-64. [PMID: 32339315 DOI: 10.1002/mds.28062] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
33 Savage JC, St-Pierre MK, Carrier M, El Hajj H, Novak SW, Sanchez MG, Cicchetti F, Tremblay MÈ. Microglial physiological properties and interactions with synapses are altered at presymptomatic stages in a mouse model of Huntington's disease pathology. J Neuroinflammation 2020;17:98. [PMID: 32241286 DOI: 10.1186/s12974-020-01782-9] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 18.0] [Reference Citation Analysis]
34 Muddapu VR, Dharshini SAP, Chakravarthy VS, Gromiha MM. Neurodegenerative Diseases - Is Metabolic Deficiency the Root Cause? Front Neurosci 2020;14:213. [PMID: 32296300 DOI: 10.3389/fnins.2020.00213] [Cited by in Crossref: 74] [Cited by in F6Publishing: 82] [Article Influence: 37.0] [Reference Citation Analysis]
35 Uzor NE, McCullough LD, Tsvetkov AS. Peroxisomal Dysfunction in Neurological Diseases and Brain Aging. Front Cell Neurosci 2020;14:44. [PMID: 32210766 DOI: 10.3389/fncel.2020.00044] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
36 Cybulska K, Perk L, Booij J, Laverman P, Rijpkema M. Huntington's Disease: A Review of the Known PET Imaging Biomarkers and Targeting Radiotracers. Molecules 2020;25:E482. [PMID: 31979301 DOI: 10.3390/molecules25030482] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
37 Mcgarry A, Biglan K, Marshall F. Huntington’s disease: clinical features, disease mechanisms, and management. Rosenberg's Molecular and Genetic Basis of Neurological and Psychiatric Disease 2020. [DOI: 10.1016/b978-0-12-813866-3.00009-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Subramaniam S. Selective Neuronal Death in Neurodegenerative Diseases: The Ongoing Mystery. Yale J Biol Med 2019;92:695-705. [PMID: 31866784] [Reference Citation Analysis]
39 Hegde RN, Chiki A, Petricca L, Martufi P, Arbez N, Mouchiroud L, Auwerx J, Landles C, Bates GP, Singh-bains MK, Curtis MA, Faull RLM, Ross CA, Caricasole A, Lashuel HA. TBK1 regulates autophagic clearance of soluble mutant huntingtin and inhibits aggregation/toxicity in different models of Huntington’s disease.. [DOI: 10.1101/869586] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
40 Cirillo G, Cirillo M, Panetsos F, Virtuoso A, Papa M. Selective Vulnerability of Basal Ganglia: Insights into the Mechanisms of Bilateral Striatal Necrosis. J Neuropathol Exp Neurol 2019;78:123-9. [PMID: 30605553 DOI: 10.1093/jnen/nly123] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
41 Schultz JL, Nopoulos PC, Gonzalez-Alegre P. Human Immunodeficiency Virus Infection in Huntington's Disease is Associated with an Earlier Age of Symptom Onset. J Huntingtons Dis 2018;7:163-6. [PMID: 29843248 DOI: 10.3233/JHD-180287] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
42 Vitanova KS, Stringer KM, Benitez DP, Brenton J, Cummings DM. Dementia associated with disorders of the basal ganglia. J Neurosci Res 2019;97:1728-41. [PMID: 31392765 DOI: 10.1002/jnr.24508] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
43 Di Pardo A, Pepe G, Castaldo S, Marracino F, Capocci L, Amico E, Madonna M, Giova S, Jeong SK, Park BM, Park BD, Maglione V. Stimulation of Sphingosine Kinase 1 (SPHK1) Is Beneficial in a Huntington's Disease Pre-clinical Model. Front Mol Neurosci 2019;12:100. [PMID: 31068790 DOI: 10.3389/fnmol.2019.00100] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
44 Soares TR, Reis SD, Pinho BR, Duchen MR, Oliveira JMA. Targeting the proteostasis network in Huntington's disease. Ageing Res Rev 2019;49:92-103. [PMID: 30502498 DOI: 10.1016/j.arr.2018.11.006] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 16.0] [Reference Citation Analysis]
45 Lewis PA, Spillane JE. Huntington’s Chorea. The Molecular and Clinical Pathology of Neurodegenerative Disease 2019. [DOI: 10.1016/b978-0-12-811069-0.00006-9] [Reference Citation Analysis]
46 Boros FA, Klivényi P, Toldi J, Vécsei L. Indoleamine 2,3-dioxygenase as a novel therapeutic target for Huntington’s disease. Expert Opinion on Therapeutic Targets 2019;23:39-51. [DOI: 10.1080/14728222.2019.1549231] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
47 Pandey S, Dash D. Cellular age in the manifestation of disease-relevant phenotypes in Huntington's disease. Mov Disord 2018;33:1096. [PMID: 30153391 DOI: 10.1002/mds.27425] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
48 Chen JY, Parekh M, Seliman H, Bakshinskaya D, Dai W, Kwan K, Chen KY, Liu AYC. Heat shock promotes inclusion body formation of mutant huntingtin (mHtt) and alleviates mHtt-induced transcription factor dysfunction. J Biol Chem 2018;293:15581-93. [PMID: 30143534 DOI: 10.1074/jbc.RA118.002933] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
49 Rosas-Arellano A, Estrada-Mondragón A, Piña R, Mantellero CA, Castro MA. The Tiny Drosophila Melanogaster for the Biggest Answers in Huntington's Disease. Int J Mol Sci 2018;19:E2398. [PMID: 30110961 DOI: 10.3390/ijms19082398] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
50 Alpaugh M, Galleguillos D, Forero J, Morales LC, Lackey SW, Kar P, Di Pardo A, Holt A, Kerr BJ, Todd KG, Baker GB, Fouad K, Sipione S. Disease-modifying effects of ganglioside GM1 in Huntington's disease models. EMBO Mol Med 2017;9:1537-57. [PMID: 28993428 DOI: 10.15252/emmm.201707763] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 8.3] [Reference Citation Analysis]
51 Novati A, Hentrich T, Wassouf Z, Weber JJ, Yu-Taeger L, Déglon N, Nguyen HP, Schulze-Hentrich JM. Environment-dependent striatal gene expression in the BACHD rat model for Huntington disease. Sci Rep 2018;8:5803. [PMID: 29643462 DOI: 10.1038/s41598-018-24243-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
52 Adil MM, Gaj T, Rao AT, Kulkarni RU, Fuentes CM, Ramadoss GN, Ekman FK, Miller EW, Schaffer DV. hPSC-Derived Striatal Cells Generated Using a Scalable 3D Hydrogel Promote Recovery in a Huntington Disease Mouse Model. Stem Cell Reports 2018;10:1481-91. [PMID: 29628395 DOI: 10.1016/j.stemcr.2018.03.007] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 8.5] [Reference Citation Analysis]
53 Kandasamy M, Aigner L. Reactive Neuroblastosis in Huntington's Disease: A Putative Therapeutic Target for Striatal Regeneration in the Adult Brain. Front Cell Neurosci 2018;12:37. [PMID: 29593498 DOI: 10.3389/fncel.2018.00037] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
54 André EM, Daviaud N, Sindji L, Cayon J, Perrot R, Montero-Menei CN. A novel ex vivo Huntington's disease model for studying GABAergic neurons and cell grafts by laser microdissection. PLoS One 2018;13:e0193409. [PMID: 29505597 DOI: 10.1371/journal.pone.0193409] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
55 McMeekin LJ, Li Y, Fox SN, Rowe GC, Crossman DK, Day JJ, Li Y, Detloff PJ, Cowell RM. Cell-Specific Deletion of PGC-1α from Medium Spiny Neurons Causes Transcriptional Alterations and Age-Related Motor Impairment. J Neurosci 2018;38:3273-86. [PMID: 29491012 DOI: 10.1523/JNEUROSCI.0848-17.2018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
56 Mattis VB, Svendsen CN. Huntington modeling improves with age. Nat Neurosci 2018;21:301-3. [PMID: 29476127 DOI: 10.1038/s41593-018-0086-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
57 Stricker-shaver J, Novati A, Yu-taeger L, Nguyen HP. Genetic Rodent Models of Huntington Disease. In: Nóbrega C, Pereira de Almeida L, editors. Polyglutamine Disorders. Cham: Springer International Publishing; 2018. pp. 29-57. [DOI: 10.1007/978-3-319-71779-1_2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
58 Luis-ravelo D, Estévez-silva H, Barroso-chinea P, Afonso-oramas D, Salas-hernández J, Rodríguez-núñez J, Acevedo-arozena A, Marcellino D, González-hernández T. Pramipexole reduces soluble mutant huntingtin and protects striatal neurons through dopamine D3 receptors in a genetic model of Huntington's disease. Experimental Neurology 2018;299:137-47. [DOI: 10.1016/j.expneurol.2017.10.019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
59 Rosas-Arellano A, Estrada-Mondragón A, Mantellero CA, Tejeda-Guzmán C, Castro MA. The adjustment of γ-aminobutyric acidA tonic subunits in Huntington's disease: from transcription to translation to synaptic levels into the neostriatum. Neural Regen Res 2018;13:584-90. [PMID: 29722299 DOI: 10.4103/1673-5374.230270] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
60 Garcia-Miralles M, Geva M, Tan JY, Yusof NABM, Cha Y, Kusko R, Tan LJ, Xu X, Grossman I, Orbach A, Hayden MR, Pouladi MA. Early pridopidine treatment improves behavioral and transcriptional deficits in YAC128 Huntington disease mice. JCI Insight 2017;2:95665. [PMID: 29212949 DOI: 10.1172/jci.insight.95665] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 6.0] [Reference Citation Analysis]
61 Abada YS, Ellenbroek BA. Of rodents and men: understanding the emergence of motor and cognitive symptoms in Huntington disease. Behav Pharmacol 2016;27:403-14. [PMID: 26886208 DOI: 10.1097/FBP.0000000000000217] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
62 Choi KA, Choi Y, Hong S. Stem cell transplantation for Huntington's diseases. Methods. 2018;133:104-112. [PMID: 28867501 DOI: 10.1016/j.ymeth.2017.08.017] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
63 Vaca-Palomares I, Coe BC, Brien DC, Campos-Romo A, Munoz DP, Fernandez-Ruiz J. Voluntary saccade inhibition deficits correlate with extended white-matter cortico-basal atrophy in Huntington's disease. Neuroimage Clin 2017;15:502-12. [PMID: 28649493 DOI: 10.1016/j.nicl.2017.06.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
64 Hunt C, Pouton C, Haynes J. Characterising the developmental profile of human embryonic stem cell-derived medium spiny neuron progenitors and assessing mature neuron function using a CRISPR-generated human DARPP-32 WT/eGFP-AMP reporter line. Neurochemistry International 2017;106:3-13. [DOI: 10.1016/j.neuint.2017.01.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
65 Santiago JA, Bottero V, Potashkin JA. Dissecting the Molecular Mechanisms of Neurodegenerative Diseases through Network Biology. Front Aging Neurosci 2017;9:166. [PMID: 28611656 DOI: 10.3389/fnagi.2017.00166] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 9.8] [Reference Citation Analysis]
66 Schier CJ, Marks WD, Paris JJ, Barbour AJ, McLane VD, Maragos WF, McQuiston AR, Knapp PE, Hauser KF. Selective Vulnerability of Striatal D2 versus D1 Dopamine Receptor-Expressing Medium Spiny Neurons in HIV-1 Tat Transgenic Male Mice. J Neurosci 2017;37:5758-69. [PMID: 28473642 DOI: 10.1523/JNEUROSCI.0622-17.2017] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 7.4] [Reference Citation Analysis]
67 Li B, Razi A, Friston KJ. Editorial: Mapping Psychopathology with fMRI and Effective Connectivity Analysis. Front Hum Neurosci 2017;11:151. [PMID: 28408874 DOI: 10.3389/fnhum.2017.00151] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
68 Ring K, O’brien R, Zhang N, Ellerby LM. 6 Huntington’s Disease and Stem Cells. Patient-Specific Stem Cells 2017. [DOI: 10.1201/9781315402185-7] [Reference Citation Analysis]
69 Barkhuizen M, Van de Berg WD, De Vente J, Blanco CE, Gavilanes AW, Steinbusch HW. Nitric Oxide Production in the Striatum and Cerebellum of a Rat Model of Preterm Global Perinatal Asphyxia. Neurotox Res 2017;31:400-9. [PMID: 28110393 DOI: 10.1007/s12640-017-9700-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
70 Déglon N. From huntingtin gene to Huntington’s disease-altering strategies. Disease-Modifying Targets in Neurodegenerative Disorders 2017. [DOI: 10.1016/b978-0-12-805120-7.00010-5] [Reference Citation Analysis]
71 Zhang C, Shen Y. A Cell Type-Specific Expression Signature Predicts Haploinsufficient Autism-Susceptibility Genes. Hum Mutat 2017;38:204-15. [PMID: 27860035 DOI: 10.1002/humu.23147] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 3.8] [Reference Citation Analysis]
72 Girling KD, Wang YT. Neuroprotective strategies for NMDAR-mediated excitotoxicity in Huntington’s Disease. Front Biol 2016;11:439-458. [DOI: 10.1007/s11515-016-1425-z] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
73 Esteves S, Duarte-Silva S, Maciel P. Discovery of Therapeutic Approaches for Polyglutamine Diseases: A Summary of Recent Efforts. Med Res Rev 2017;37:860-906. [PMID: 27870126 DOI: 10.1002/med.21425] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
74 Wang J, Liu S, Wang H, Ju N, Zeng Y. A model-based analysis of physiological properties of the striatal medium spiny neuron. Neurol Res 2015;37:1074-81. [PMID: 26923577 DOI: 10.1080/01616412.2015.1110304] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
75 Ring KL, An MC, Zhang N, O'Brien RN, Ramos EM, Gao F, Atwood R, Bailus BJ, Melov S, Mooney SD, Coppola G, Ellerby LM. Genomic Analysis Reveals Disruption of Striatal Neuronal Development and Therapeutic Targets in Human Huntington's Disease Neural Stem Cells. Stem Cell Reports 2015;5:1023-38. [PMID: 26651603 DOI: 10.1016/j.stemcr.2015.11.005] [Cited by in Crossref: 76] [Cited by in F6Publishing: 57] [Article Influence: 12.7] [Reference Citation Analysis]
76 Zhang C, Shen Y. A cell type-specific expression signature predicts haploinsufficient autism-susceptibility genes.. [DOI: 10.1101/058826] [Reference Citation Analysis]
77 Oliveira AO, Osmand A, Outeiro TF, Muchowski PJ, Finkbeiner S. αB-Crystallin overexpression in astrocytes modulates the phenotype of the BACHD mouse model of Huntington's disease. Hum Mol Genet 2016;25:1677-89. [PMID: 26920069 DOI: 10.1093/hmg/ddw028] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
78 Guedes-Dias P, Pinho BR, Soares TR, de Proença J, Duchen MR, Oliveira JM. Mitochondrial dynamics and quality control in Huntington's disease. Neurobiol Dis 2016;90:51-7. [PMID: 26388396 DOI: 10.1016/j.nbd.2015.09.008] [Cited by in Crossref: 74] [Cited by in F6Publishing: 68] [Article Influence: 10.6] [Reference Citation Analysis]
79 Pasek JG, Wang X, Colbran RJ. Differential CaMKII regulation by voltage-gated calcium channels in the striatum. Mol Cell Neurosci 2015;68:234-43. [PMID: 26255006 DOI: 10.1016/j.mcn.2015.08.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
80 Roberts-Crowley ML, Rittenhouse AR. Characterization of ST14A Cells for Studying Modulation of Voltage-Gated Calcium Channels. PLoS One 2015;10:e0132469. [PMID: 26147123 DOI: 10.1371/journal.pone.0132469] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
81 Swarnkar S, Chen Y, Pryor WM, Shahani N, Page DT, Subramaniam S. Ectopic expression of the striatal-enriched GTPase Rhes elicits cerebellar degeneration and an ataxia phenotype in Huntington's disease. Neurobiol Dis 2015;82:66-77. [PMID: 26048156 DOI: 10.1016/j.nbd.2015.05.011] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 5.3] [Reference Citation Analysis]
82 Schroll H, Beste C, Hamker FH. Combined lesions of direct and indirect basal ganglia pathways but not changes in dopamine levels explain learning deficits in patients with Huntington's disease. Eur J Neurosci 2015;41:1227-44. [DOI: 10.1111/ejn.12868] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
83 Southwell AL, Franciosi S, Villanueva EB, Xie Y, Winter LA, Veeraraghavan J, Jonason A, Felczak B, Zhang W, Kovalik V, Waltl S, Hall G, Pouladi MA, Smith ES, Bowers WJ, Zauderer M, Hayden MR. Anti-semaphorin 4D immunotherapy ameliorates neuropathology and some cognitive impairment in the YAC128 mouse model of Huntington disease. Neurobiol Dis 2015;76:46-56. [PMID: 25662335 DOI: 10.1016/j.nbd.2015.01.002] [Cited by in Crossref: 61] [Cited by in F6Publishing: 61] [Article Influence: 8.7] [Reference Citation Analysis]
84 Mcgarry AJ, Biglan K, Marshall F. Huntington Disease. Rosenberg's Molecular and Genetic Basis of Neurological and Psychiatric Disease 2015. [DOI: 10.1016/b978-0-12-410529-4.00075-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
85 Phillips O, Squitieri F, Sanchez-Castaneda C, Elifani F, Caltagirone C, Sabatini U, Di Paola M. Deep white matter in Huntington's disease. PLoS One 2014;9:e109676. [PMID: 25340651 DOI: 10.1371/journal.pone.0109676] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 4.0] [Reference Citation Analysis]
86 Ribeiro FM, Hamilton A, Doria JG, Guimaraes IM, Cregan SP, Ferguson SS. Metabotropic glutamate receptor 5 as a potential therapeutic target in Huntington's disease. Expert Opin Ther Targets 2014;18:1293-304. [PMID: 25118797 DOI: 10.1517/14728222.2014.948419] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
87 Pecho-Vrieseling E, Rieker C, Fuchs S, Bleckmann D, Esposito MS, Botta P, Goldstein C, Bernhard M, Galimberti I, Müller M, Lüthi A, Arber S, Bouwmeester T, van der Putten H, Di Giorgio FP. Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons. Nat Neurosci 2014;17:1064-72. [PMID: 25017010 DOI: 10.1038/nn.3761] [Cited by in Crossref: 126] [Cited by in F6Publishing: 132] [Article Influence: 15.8] [Reference Citation Analysis]
88 Clark PJ, Ghasem PR, Mika A, Day HE, Herrera JJ, Greenwood BN, Fleshner M. Wheel running alters patterns of uncontrollable stress-induced cfos mRNA expression in rat dorsal striatum direct and indirect pathways: A possible role for plasticity in adenosine receptors. Behav Brain Res 2014;272:252-63. [PMID: 25017571 DOI: 10.1016/j.bbr.2014.07.006] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
89 Ribeiro M, Rosenstock TR, Oliveira AM, Oliveira CR, Rego AC. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington’s disease knock-in striatal cells. Free Radic Biol Med. 2014;74:129-144. [PMID: 24992836 DOI: 10.1016/j.freeradbiomed.2014.06.023] [Cited by in Crossref: 87] [Cited by in F6Publishing: 92] [Article Influence: 10.9] [Reference Citation Analysis]
90 Choi KA, Hwang I, Park HS, Oh SI, Kang S, Hong S. Stem cell therapy and cellular engineering for treatment of neuronal dysfunction in Huntington's disease. Biotechnol J 2014;9:882-94. [PMID: 24827816 DOI: 10.1002/biot.201300560] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
91 Alto LT, Chen X, Ruhn KA, Treviño I, Tansey MG. AAV-dominant negative tumor necrosis factor (DN-TNF) gene transfer to the striatum does not rescue medium spiny neurons in the YAC128 mouse model of Huntington's disease. PLoS One 2014;9:e96544. [PMID: 24824433 DOI: 10.1371/journal.pone.0096544] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
92 Phillips O, Squitieri F, Sanchez-Castaneda C, Elifani F, Griguoli A, Maglione V, Caltagirone C, Sabatini U, Di Paola M. The Corticospinal Tract in Huntington's Disease. Cereb Cortex 2015;25:2670-82. [PMID: 24706734 DOI: 10.1093/cercor/bhu065] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 3.1] [Reference Citation Analysis]
93 Watkin EE, Arbez N, Waldron-Roby E, O'Meally R, Ratovitski T, Cole RN, Ross CA. Phosphorylation of mutant huntingtin at serine 116 modulates neuronal toxicity. PLoS One 2014;9:e88284. [PMID: 24505464 DOI: 10.1371/journal.pone.0088284] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 4.5] [Reference Citation Analysis]
94 Unterwald EM, Page ME, Brown TB, Miller JS, Ruiz M, Pescatore KA, Xu B, Reichardt LF, Beverley J, Tang B, Steiner H, Thomas EA, Ehrlich ME. Behavioral and transcriptome alterations in male and female mice with postnatal deletion of TrkB in dorsal striatal medium spiny neurons. Mol Neurodegener 2013;8:47. [PMID: 24369067 DOI: 10.1186/1750-1326-8-47] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
95 Gallagher PS, Oeser ML, Abraham AC, Kaganovich D, Gardner RG. Cellular maintenance of nuclear protein homeostasis. Cell Mol Life Sci 2014;71:1865-79. [PMID: 24305949 DOI: 10.1007/s00018-013-1530-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
96 Chandwani S, Keilani S, Ortiz-Virumbrales M, Morant A, Bezdecny S, Ehrlich ME. Induction of DARPP-32 by brain-derived neurotrophic factor in striatal neurons in vitro is modified by histone deacetylase inhibitors and Nab2. PLoS One 2013;8:e76842. [PMID: 24204683 DOI: 10.1371/journal.pone.0076842] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
97 Rao DB, Little PB, Sills RC. Subsite awareness in neuropathology evaluation of National Toxicology Program (NTP) studies: a review of select neuroanatomical structures with their functional significance in rodents. Toxicol Pathol 2014;42:487-509. [PMID: 24135464 DOI: 10.1177/0192623313501893] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
98 Kloster E, Saft C, Epplen JT, Arning L. CNR1 variation is associated with the age at onset in Huntington disease. European Journal of Medical Genetics 2013;56:416-9. [DOI: 10.1016/j.ejmg.2013.05.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
99 Chesselet MF, Carmichael ST. Animal models of neurological disorders. Neurotherapeutics 2012;9:241-4. [PMID: 22460561 DOI: 10.1007/s13311-012-0118-9] [Cited by in Crossref: 42] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]