1 |
Xu Y, Zhang X, Zhou A, Cheng C, Chen K, Zhou X, Zhang G, Ding L, Wu X, Ge H, Wu H, Ning X. A Smart "Energy NanoLock" Selectively Blocks Oral Cancer Energy Metabolism through Synergistic Inhibition of Exogenous Nutrient Supply and Endogenous Energy Production. Adv Mater 2023;35:e2207384. [PMID: 36329673 DOI: 10.1002/adma.202207384] [Reference Citation Analysis]
|
2 |
Hemmati S, Rasekhi Kazerooni H. Polypharmacological Cell-Penetrating Peptides from Venomous Marine Animals Based on Immunomodulating, Antimicrobial, and Anticancer Properties. Mar Drugs 2022;20. [PMID: 36547910 DOI: 10.3390/md20120763] [Reference Citation Analysis]
|
3 |
Zaman R, Islam RA, Chowdhury EH. Evolving therapeutic proteins to precisely kill cancer cells. Journal of Controlled Release 2022;351:779-804. [DOI: 10.1016/j.jconrel.2022.09.066] [Reference Citation Analysis]
|
4 |
Bose D, Roy L, Chatterjee S. Peptide therapeutics in the management of metastatic cancers. RSC Adv 2022;12:21353-73. [PMID: 35975072 DOI: 10.1039/d2ra02062a] [Reference Citation Analysis]
|
5 |
Karami Fath M, Babakhaniyan K, Zokaei M, Yaghoubian A, Akbari S, Khorsandi M, Soofi A, Nabi-Afjadi M, Zalpoor H, Jalalifar F, Azargoonjahromi A, Payandeh Z, Alagheband Bahrami A. Anti-cancer peptide-based therapeutic strategies in solid tumors. Cell Mol Biol Lett 2022;27:33. [PMID: 35397496 DOI: 10.1186/s11658-022-00332-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
|
6 |
Trinidad-Calderón PA, Varela-Chinchilla CD, García-Lara S. Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021;26:7453. [PMID: 34946535 DOI: 10.3390/molecules26247453] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
7 |
Trinidad-calderón PA, Varela-chinchilla CD, García-lara S. Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021;26:7453. [DOI: 10.3390/molecules26247453] [Reference Citation Analysis]
|
8 |
Ahmadi P, Muguruma K, Chang TC, Tamura S, Tsubokura K, Egawa Y, Suzuki T, Dohmae N, Nakao Y, Tanaka K. In vivo metal-catalyzed SeCT therapy by a proapoptotic peptide. Chem Sci 2021;12:12266-73. [PMID: 34603656 DOI: 10.1039/d1sc01784e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
9 |
Ilangala AB, Lechanteur A, Fillet M, Piel G. Therapeutic peptides for chemotherapy: Trends and challenges for advanced delivery systems. Eur J Pharm Biopharm 2021;167:140-58. [PMID: 34311093 DOI: 10.1016/j.ejpb.2021.07.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
|
10 |
Timur SS, Gürsoy RN. The role of peptide-based therapeutics in oncotherapy. J Drug Target 2021;:1-15. [PMID: 33775190 DOI: 10.1080/1061186X.2021.1906884] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
11 |
Fortuna P, Linhares BM, Purohit T, Pollock J, Cierpicki T, Grembecka J, Berlicki Ł. Covalent and noncovalent constraints yield a figure eight-like conformation of a peptide inhibiting the menin-MLL interaction. Eur J Med Chem 2020;207:112748. [PMID: 32882610 DOI: 10.1016/j.ejmech.2020.112748] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
12 |
Dueñas-Cuellar RA, Santana CJC, Magalhães ACM, Pires OR Jr, Fontes W, Castro MS. Scorpion Toxins and Ion Channels: Potential Applications in Cancer Therapy. Toxins (Basel) 2020;12:E326. [PMID: 32429050 DOI: 10.3390/toxins12050326] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
13 |
Amatya R, Park T, Hwang S, Yang J, Lee Y, Cheong H, Moon C, Kwak HD, Min KA, Shin MC. Drug Delivery Strategies for Enhancing the Therapeutic Efficacy of Toxin-Derived Anti-Diabetic Peptides. Toxins (Basel) 2020;12:E313. [PMID: 32397648 DOI: 10.3390/toxins12050313] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Cui H, Han W, Zhang J, Zhang Z, Su X. Advances in the Regulatory Effects of Bioactive Peptides on Metabolic Signaling Pathways in Tumor Cells. J Cancer 2019;10:2425-33. [PMID: 31258747 DOI: 10.7150/jca.31359] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
|
15 |
Dennison SR, Hauß T, Badiani K, Harris F, Phoenix DA. Biophysical investigation into the antibacterial action of modelin-5-NH2. Soft Matter 2019;15:4215-26. [PMID: 31074477 DOI: 10.1039/c8sm02374c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
16 |
Dullius A, Rocha CM, Laufer S, de Souza CFV, Goettert MI. Are peptides a solution for the treatment of hyperactivated JAK3 pathways? Inflammopharmacology 2019;27:433-52. [PMID: 30929155 DOI: 10.1007/s10787-019-00589-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
|