BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Moutal A, White KA, Chefdeville A, Laufmann RN, Vitiello PF, Feinstein D, Weimer JM, Khanna R. Dysregulation of CRMP2 Post-Translational Modifications Drive Its Pathological Functions. Mol Neurobiol 2019;56:6736-55. [PMID: 30915713 DOI: 10.1007/s12035-019-1568-4] [Cited by in Crossref: 40] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Mockett BG, Ryan MM. The therapeutic potential of the neuroactive peptides of soluble amyloid precursor protein-alpha in Alzheimer's disease and related neurological disorders. Semin Cell Dev Biol 2023;139:93-101. [PMID: 35654665 DOI: 10.1016/j.semcdb.2022.05.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Morgan CE, Zhang Z, Miyagi M, Golczak M, Yu EW. Toward structural-omics of the bovine retinal pigment epithelium. Cell Rep 2022;41:111876. [PMID: 36577381 DOI: 10.1016/j.celrep.2022.111876] [Reference Citation Analysis]
3 Tringides ML, Zhang Z, Morgan CE, Su CC, Yu EW. A cryo-electron microscopic approach to elucidate protein structures from human brain microsomes. Life Sci Alliance 2023;6. [PMID: 36450447 DOI: 10.26508/lsa.202201724] [Reference Citation Analysis]
4 Quach TT, Stratton HJ, Khanna R, Mackey-Alfonso S, Deems N, Honnorat J, Meyer K, Duchemin AM. Neurodegenerative Diseases: From Dysproteostasis, Altered Calcium Signalosome to Selective Neuronal Vulnerability to AAV-Mediated Gene Therapy. Int J Mol Sci 2022;23. [PMID: 36430666 DOI: 10.3390/ijms232214188] [Reference Citation Analysis]
5 Abu Rmaileh A, Solaimuthu B, Khatib A, Lavi S, Tanna M, Hayashi A, Ben Yosef M, Lichtenstein M, Pillar N, Shaul YD. DPYSL2 interacts with JAK1 to mediate breast cancer cell migration. J Cell Biol 2022;221. [PMID: 35575798 DOI: 10.1083/jcb.202106078] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Xu K, Wang D, He Y, Wang S, Liu G, Pan Y, Jiang H, Peng Y, Xiao F, Huang Y, Wang Q, Wu Y, Pan S, Hu Y. Identification of Anti-Collapsin Response Mediator Protein 2 Antibodies in Patients With Encephalitis or Encephalomyelitis. Front Immunol 2022;13:854445. [DOI: 10.3389/fimmu.2022.854445] [Reference Citation Analysis]
7 Ujcikova H, Robles D, Yue X, Svoboda P, Lee YS, Navratilova E. Time-Dependent Changes in Protein Composition of Medial Prefrontal Cortex in Rats with Neuropathic Pain. Int J Mol Sci 2022;23:955. [PMID: 35055141 DOI: 10.3390/ijms23020955] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ferron L, Zamponi GW. Voltage-Gated Calcium Channels in the Afferent Pain Pathway. Voltage-Gated Calcium Channels 2022. [DOI: 10.1007/978-3-031-08881-0_18] [Reference Citation Analysis]
9 Braden K, Stratton HJ, Salvemini D, Khanna R. Small molecule targeting NaV1.7 via inhibition of the CRMP2-Ubc9 interaction reduces and prevents pain chronification in a mouse model of oxaliplatin-induced neuropathic pain. Neurobiology of Pain 2022;11:100082. [DOI: 10.1016/j.ynpai.2021.100082] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Smith BJ, Carregari VC. Known and Unexplored Post-Translational Modification Pathways in Schizophrenia. Advances in Experimental Medicine and Biology 2022. [DOI: 10.1007/978-3-030-97182-3_6] [Reference Citation Analysis]
11 Jiang YP, Wang S, Lai WD, Wu XQ, Jin Y, Xu ZH, Moutal A, Khanna R, Park KD, Shan ZM, Wen CP, Yu J. Neuronal CRMP2 phosphorylation inhibition by the flavonoid, naringenin, contributes to the reversal of spinal sensitization and arthritic pain improvement. Arthritis Res Ther 2022;24:277. [PMID: 36564853 DOI: 10.1186/s13075-022-02975-8] [Reference Citation Analysis]
12 Bałaban J, Zielińska M, Wierzbicki M, Ostaszewska T, Fajkowska M, Rzepakowska M, Daniluk K, Sosnowska M, Chwalibog A, Sawosz E. Effect of Muscle Extract and Graphene Oxide on Muscle Structure of Chicken Embryos. Animals (Basel) 2021;11:3467. [PMID: 34944245 DOI: 10.3390/ani11123467] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Brustovetsky T, Khanna R, Brustovetsky N. Involvement of CRMP2 in Regulation of Mitochondrial Morphology and Motility in Huntington's Disease. Cells 2021;10:3172. [PMID: 34831395 DOI: 10.3390/cells10113172] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Morales X, Peláez R, Garasa S, Ortiz de Solórzano C, Rouzaut A. CRMP2 as a Candidate Target to Interfere with Lung Cancer Cell Migration. Biomolecules 2021;11:1533. [PMID: 34680167 DOI: 10.3390/biom11101533] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Brustovetsky T, Khanna R, Brustovetsky N. CRMP2 Is Involved in Regulation of Mitochondrial Morphology and Motility in Neurons. Cells 2021;10:2781. [PMID: 34685760 DOI: 10.3390/cells10102781] [Reference Citation Analysis]
16 Quach TT, Moutal A, Khanna R, Deems NP, Duchemin AM, Barrientos RM. Collapsin Response Mediator Proteins: Novel Targets for Alzheimer's Disease. J Alzheimers Dis 2020;77:949-60. [PMID: 32804096 DOI: 10.3233/JAD-200721] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Xu K, Wang D, He Y, Wang S, Liu G, Pan Y, Jiang H, Peng Y, Xiao F, Huang Y, Wang Q, Wu Y, Pan S, Hu Y. Characterization of A Novel Autoimmune Encephalitis Associated Antibody against CRMP2.. [DOI: 10.1101/2021.07.15.21260548] [Reference Citation Analysis]
18 Mast N, Petrov AM, Prendergast E, Bederman I, Pikuleva IA. Brain Acetyl-CoA Production and Phosphorylation of Cytoskeletal Proteins Are Targets of CYP46A1 Activity Modulation and Altered Sterol Flux. Neurotherapeutics 2021;18:2040-60. [PMID: 34235635 DOI: 10.1007/s13311-021-01079-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
19 Yang L, Li CY, Ouyang JY, Li MZ, Zhan Y, Feng XF, Lu Y, Li MC, Lei JF, Zhao T, Wang L, Zou HY, Zhao H. Trillium tschonoskii rhizomes' saponins induces oligodendrogenesis and axonal reorganization for ischemic stroke recovery in rats. J Ethnopharmacol 2021;279:114358. [PMID: 34166736 DOI: 10.1016/j.jep.2021.114358] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Cheng J, Deng Y, Zhou J. Role of the Ubiquitin System in Chronic Pain. Front Mol Neurosci 2021;14:674914. [PMID: 34122010 DOI: 10.3389/fnmol.2021.674914] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
21 Welz B, Bikker R, Hoffmeister L, Diekmann M, Christmann M, Brand K, Huber R. Activation of GSK3 Prevents Termination of TNF-Induced Signaling. J Inflamm Res 2021;14:1717-30. [PMID: 33986607 DOI: 10.2147/JIR.S300806] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Fingleton E, Li Y, Roche KW. Advances in Proteomics Allow Insights Into Neuronal Proteomes. Front Mol Neurosci 2021;14:647451. [PMID: 33935646 DOI: 10.3389/fnmol.2021.647451] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Moutal A, Cai S, Yu J, Stratton HJ, Chefdeville A, Gomez K, Ran D, Madura CL, Boinon L, Soto M, Zhou Y, Shan Z, Chew LA, Rodgers KE, Khanna R. Studies on CRMP2 SUMOylation-deficient transgenic mice identify sex-specific Nav1.7 regulation in the pathogenesis of chronic neuropathic pain. Pain 2020;161:2629-51. [PMID: 32569093 DOI: 10.1097/j.pain.0000000000001951] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
24 Day NJ, Gaffrey MJ, Qian WJ. Stoichiometric Thiol Redox Proteomics for Quantifying Cellular Responses to Perturbations. Antioxidants (Basel) 2021;10:499. [PMID: 33807006 DOI: 10.3390/antiox10030499] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
25 Carona A, Bicker J, Silva R, Fonseca C, Falcão A, Fortuna A. Pharmacology of lacosamide: From its molecular mechanisms and pharmacokinetics to future therapeutic applications. Life Sci 2021;275:119342. [PMID: 33713668 DOI: 10.1016/j.lfs.2021.119342] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
26 Ferron L, Koshti S, Zamponi GW. The life cycle of voltage-gated Ca2+ channels in neurons: an update on the trafficking of neuronal calcium channels. Neuronal Signal 2021;5:NS20200095. [PMID: 33664982 DOI: 10.1042/NS20200095] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
27 Gomez K, Ran D, Madura CL, Moutal A, Khanna R. Non-SUMOylated CRMP2 decreases NaV1.7 currents via the endocytic proteins Numb, Nedd4-2 and Eps15. Mol Brain 2021;14:20. [PMID: 33478555 DOI: 10.1186/s13041-020-00714-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
28 Dhanalakshmi C, Janakiraman U, Moutal A, Fukunaga K, Khanna R, Nelson MA. Evaluation of the effects of the T-type calcium channel enhancer SAK3 in a rat model of TAF1 deficiency. Neurobiol Dis 2021;149:105224. [PMID: 33359140 DOI: 10.1016/j.nbd.2020.105224] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
29 Gomez K, Ran D, Madura CL, Moutal A, Khanna R. Studies on CRMP2 SUMOylation-deficient transgenic mice reveal novel insights into the trafficking of NaV1.7 channels.. [DOI: 10.1101/2020.09.29.318774] [Reference Citation Analysis]
30 Khanna R, Moutal A, Perez-Miller S, Chefdeville A, Boinon L, Patek M. Druggability of CRMP2 for Neurodegenerative Diseases. ACS Chem Neurosci 2020;11:2492-505. [PMID: 32693579 DOI: 10.1021/acschemneuro.0c00307] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
31 Moutal A, Shan Z, Miranda VG, François-Moutal L, Madura CL, Khanna M, Khanna R. Evaluation of edonerpic maleate as a CRMP2 inhibitor for pain relief. Channels (Austin) 2019;13:498-504. [PMID: 31680630 DOI: 10.1080/19336950.2019.1684608] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
32 Protto V, Tramutola A, Fabiani M, Marcocci ME, Napoletani G, Iavarone F, Vincenzoni F, Castagnola M, Perluigi M, Di Domenico F, De Chiara G, Palamara AT. Multiple Herpes Simplex Virus-1 (HSV-1) Reactivations Induce Protein Oxidative Damage in Mouse Brain: Novel Mechanisms for Alzheimer's Disease Progression. Microorganisms 2020;8:E972. [PMID: 32610629 DOI: 10.3390/microorganisms8070972] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
33 Moutal A, Ji Y, Bellampalli SS, Khanna R. Differential expression of Cdk5-phosphorylated CRMP2 following a spared nerve injury. Mol Brain 2020;13:97. [PMID: 32571373 DOI: 10.1186/s13041-020-00633-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
34 Zhou L, Wu Z, Wang G, Xiao L, Wang H, Sun L, Xie Y. Long-term maternal separation potentiates depressive-like behaviours and neuroinflammation in adult male C57/BL6J mice. Pharmacol Biochem Behav 2020;196:172953. [PMID: 32450088 DOI: 10.1016/j.pbb.2020.172953] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
35 Moutal A, Kalinin S, Kowal K, Marangoni N, Dupree J, Lin SX, Lis K, Lisi L, Hensley K, Khanna R, Feinstein DL. Neuronal Conditional Knockout of Collapsin Response Mediator Protein 2 Ameliorates Disease Severity in a Mouse Model of Multiple Sclerosis. ASN Neuro 2019;11:1759091419892090. [PMID: 31795726 DOI: 10.1177/1759091419892090] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
36 Stratton H, Boinon L, Moutal A, Khanna R. Coordinating Synaptic Signaling with CRMP2. Int J Biochem Cell Biol 2020;124:105759. [PMID: 32437854 DOI: 10.1016/j.biocel.2020.105759] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
37 Moutal A, Cai S, Yu J, Stratton HJ, Chefdeville A, Gomez K, Ran D, Madura CL, Boinon L, Soto M, Zhou Y, Shan Z, Chew LA, Rodgers KE, Khanna R. Studies on CRMP2 SUMOylation-deficient transgenic mice identify sex-specific NaV1.7 regulation in the pathogenesis of chronic neuropathic pain.. [DOI: 10.1101/2020.04.20.049106] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
38 Cai S, Shan Z, Zhang Z, Moutal A, Khanna R. Activity of T-type calcium channels is independent of CRMP2 in sensory neurons. Channels (Austin) 2019;13:147-52. [PMID: 31025580 DOI: 10.1080/19336950.2019.1608129] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
39 Zhou Y, Cai S, Moutal A, Yu J, Gómez K, Madura CL, Shan Z, Pham NYN, Serafini MJ, Dorame A, Scott DD, François-Moutal L, Perez-Miller S, Patek M, Khanna M, Khanna R. The Natural Flavonoid Naringenin Elicits Analgesia through Inhibition of NaV1.8 Voltage-Gated Sodium Channels. ACS Chem Neurosci 2019;10:4834-46. [PMID: 31697467 DOI: 10.1021/acschemneuro.9b00547] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
40 Garcia-Caballero A, Zhang FX, Chen L, M'Dahoma S, Huang J, Zamponi GW. SUMOylation regulates USP5-Cav3.2 calcium channel interactions. Mol Brain 2019;12:73. [PMID: 31455361 DOI: 10.1186/s13041-019-0493-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
41 Savchenko V, Kalinin S, Boullerne AI, Kowal K, Lin SX, Feinstein DL. Effects of the CRMP2 activator lanthionine ketimine ethyl ester on oligodendrocyte progenitor cells. J Neuroimmunol 2019;334:576977. [PMID: 31177034 DOI: 10.1016/j.jneuroim.2019.576977] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]