BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ikram M, Muhammad T, Rehman SU, Khan A, Jo MG, Ali T, Kim MO. Hesperetin Confers Neuroprotection by Regulating Nrf2/TLR4/NF-κB Signaling in an Aβ Mouse Model. Mol Neurobiol 2019;56:6293-309. [DOI: 10.1007/s12035-019-1512-7] [Cited by in Crossref: 52] [Cited by in F6Publishing: 72] [Article Influence: 17.3] [Reference Citation Analysis]
Number Citing Articles
1 Wu L, Xian X, Xu G, Tan Z, Dong F, Zhang M, Zhang F. Toll-Like Receptor 4: A Promising Therapeutic Target for Alzheimer's Disease. Mediators Inflamm 2022;2022:7924199. [PMID: 36046763 DOI: 10.1155/2022/7924199] [Reference Citation Analysis]
2 Li J, Sun M, Cui X, Li C. Protective Effects of Flavonoids against Alzheimer's Disease: Pathological Hypothesis, Potential Targets, and Structure-Activity Relationship. Int J Mol Sci 2022;23:10020. [PMID: 36077418 DOI: 10.3390/ijms231710020] [Reference Citation Analysis]
3 Idrees M, Kumar V, Khan AM, Joo M, Uddin Z, Lee K, Kong I. Hesperetin activated SIRT1 neutralizes cadmium effects on the early bovine embryo development. Theriogenology 2022;189:209-21. [DOI: 10.1016/j.theriogenology.2022.06.008] [Reference Citation Analysis]
4 Sanaie S, Nikanfar S, Kalekhane ZY, Azizi-zeinalhajlou A, Sadigh-eteghad S, Araj-khodaei M, Ayati MH, Andalib S. Saffron as a promising therapy for diabetes and Alzheimer's disease: mechanistic insights. Metab Brain Dis. [DOI: 10.1007/s11011-022-01059-5] [Reference Citation Analysis]
5 Scoditti E, Tumolo MR, Garbarino S. Mediterranean Diet on Sleep: A Health Alliance. Nutrients 2022;14:2998. [DOI: 10.3390/nu14142998] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Song H, Ding Z, Chen J, Chen T, Wang T, Huang J. The AMPK-SIRT1-FoxO1-NF-κB signaling pathway participates in Hesperetin-mediated neuroprotective effects against traumatic brain injury via the NLRP3 inflammasome. Immunopharmacol Immunotoxicol 2022;:1-35. [PMID: 35786120 DOI: 10.1080/08923973.2022.2096464] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Dhlamini Q, Wang W, Feng G, Chen A, Chong L, Li X, Li Q, Wu J, Zhou D, Wang J, Zhang H, Zhang JS. FGF1 alleviates LPS-induced acute lung injury via suppression of inflammation and oxidative stress. Mol Med 2022;28:73. [PMID: 35764933 DOI: 10.1186/s10020-022-00502-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wdowiak K, Walkowiak J, Pietrzak R, Bazan-woźniak A, Cielecka-piontek J. Bioavailability of Hesperidin and Its Aglycone Hesperetin—Compounds Found in Citrus Fruits as a Parameter Conditioning the Pro-Health Potential (Neuroprotective and Antidiabetic Activity)—Mini-Review. Nutrients 2022;14:2647. [DOI: 10.3390/nu14132647] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Nagaraju PG, S A, Priyadarshini P. Tau-aggregation inhibition: promising role of nanoencapsulated dietary molecules in the management of Alzheimer's disease. Crit Rev Food Sci Nutr 2022;:1-16. [PMID: 35748395 DOI: 10.1080/10408398.2022.2092446] [Reference Citation Analysis]
10 Evans JA, Mendonca P, Soliman KFA. Neuroprotective Effects and Therapeutic Potential of the Citrus Flavonoid Hesperetin in Neurodegenerative Diseases. Nutrients 2022;14:2228. [PMID: 35684025 DOI: 10.3390/nu14112228] [Reference Citation Analysis]
11 Wang Y, Cui W, Pang G, Xiong L, Liu Q, Xu L, Li H, Lin Y. Analyses of Physical and Chemical Compositions of Different Medicinal Specifications of CRPV by Use of Multiple Instrumental Techniques Combined with Multivariate Statistical Analysis. Molecules 2022;27:3285. [PMID: 35630762 DOI: 10.3390/molecules27103285] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Choe K, Park HY, Ikram M, Lee HJ, Park TJ, Ullah R, Kim MO. Systematic Review of the Common Pathophysiological Mechanisms in COVID-19 and Neurodegeneration: The Role of Bioactive Compounds and Natural Antioxidants. Cells 2022;11:1298. [PMID: 35455977 DOI: 10.3390/cells11081298] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
13 Hu Z, Yu P, Zhang Y, Yang Y, Zhu M, Qin S, Xu JT, Duan D, Wu Y, Wang D, Rowan MJ, Hu NW. Inhibition of the ISR abrogates mGluR5-dependent long-term depression and spatial memory deficits in a rat model of Alzheimer's disease. Transl Psychiatry 2022;12:96. [PMID: 35260557 DOI: 10.1038/s41398-022-01862-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
14 Guan Y, Zhang L, Wang S, Deng Y, Zhou H, Chen D, Zhang L. The role of microglia in Alzheimer's disease and progress of treatment. Ibrain 2022;8:37-47. [DOI: 10.1002/ibra.12023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Yan L, Guo M, Zhang Y, Yu L, Wu J, Tang Y, Ai W, Zhu F, Law BY, Chen Q, Yu C, Wong VK, Li H, Li M, Zhou X, Qin D, Wu A, Bergamo P. Dietary Plant Polyphenols as the Potential Drugs in Neurodegenerative Diseases: Current Evidence, Advances, and Opportunities. Oxidative Medicine and Cellular Longevity 2022;2022:1-40. [DOI: 10.1155/2022/5288698] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
16 Hussain Y, Khan H, Efferth T, Alam W. Regulation of endoplasmic reticulum stress by hesperetin: Focus on antitumor and cytoprotective effects. Phytomedicine 2022. [DOI: 10.1016/j.phymed.2022.153985] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Smirne C, Croce E, Di Benedetto D, Cantaluppi V, Comi C, Sainaghi PP, Minisini R, Grossini E, Pirisi M. Oxidative Stress in Non-Alcoholic Fatty Liver Disease. Livers 2022;2:30-76. [DOI: 10.3390/livers2010003] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Hamsalakshmi, Alex AM, Arehally Marappa M, Joghee S, Chidambaram SB. Therapeutic benefits of flavonoids against neuroinflammation: a systematic review. Inflammopharmacology 2022;30:111-36. [PMID: 35031904 DOI: 10.1007/s10787-021-00895-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
19 Qureshi S, Ali G, Idrees M, Muhammad T, Kong IK, Abbas M, Shah MIA, Ahmad S, Sewell RDE, Ullah S. Selected Thiadiazine-Thione Derivatives Attenuate Neuroinflammation in Chronic Constriction Injury Induced Neuropathy. Front Mol Neurosci 2021;14:728128. [PMID: 34975395 DOI: 10.3389/fnmol.2021.728128] [Reference Citation Analysis]
20 Jin S, Wang X, Xiang X, Wu Y, Hu J, Li Y, Lin Dong Y, Tan Y, Wu X. Inhibition of GPR17 with cangrelor improves cognitive impairment and synaptic deficits induced by Aβ1-42 through Nrf2/HO-1 and NF-κB signaling pathway in mice. Int Immunopharmacol 2021;101:108335. [PMID: 34781121 DOI: 10.1016/j.intimp.2021.108335] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
21 Zhang F, Ma Z, Qiao Y, Wang Z, Chen W, Zheng S, Yu C, Song L, Lou H, Wu J. Transcriptome sequencing and metabolomics analyses provide insights into the flavonoid biosynthesis in Torreya grandis kernels. Food Chem 2021;:131558. [PMID: 34794838 DOI: 10.1016/j.foodchem.2021.131558] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
22 Ikram M, Jo MH, Choe K, Khan A, Ahmad S, Saeed K, Kim MW, Kim MO. Cycloastragenol, a Triterpenoid Saponin, Regulates Oxidative Stress, Neurotrophic Dysfunctions, Neuroinflammation and Apoptotic Cell Death in Neurodegenerative Conditions. Cells 2021;10:2719. [PMID: 34685699 DOI: 10.3390/cells10102719] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
23 Wu J, Qian Y, Chen C, Feng F, Pan L, Yang L, Wang C. Hesperetin Exhibits Anti-Inflammatory Effects on Chondrocytes via the AMPK Pathway to Attenuate Anterior Cruciate Ligament Transection-Induced Osteoarthritis. Front Pharmacol 2021;12:735087. [PMID: 34603050 DOI: 10.3389/fphar.2021.735087] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
24 Wang Q, Dong X, Zhang R, Zhao C. Flavonoids with Potential Anti-Amyloidogenic Effects as Therapeutic Drugs for Treating Alzheimer's Disease. J Alzheimers Dis 2021;84:505-33. [PMID: 34569961 DOI: 10.3233/JAD-210735] [Reference Citation Analysis]
25 Heimfarth L, Nascimento LDS, Amazonas da Silva MJ, Lucca Junior W, Lima ES, Quintans-Junior LJ, Veiga-Junior VFD. Neuroprotective and anti-inflammatory effect of pectolinarigenin, a flavonoid from Amazonian Aegiphila integrifolia (Jacq.), against lipopolysaccharide-induced inflammation in astrocytes via NFκB and MAPK pathways. Food Chem Toxicol 2021;157:112538. [PMID: 34500010 DOI: 10.1016/j.fct.2021.112538] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
26 Ahmad S, Jo MH, Ikram M, Khan A, Kim MO. Deciphering the Potential Neuroprotective Effects of Luteolin against Aβ1-42-Induced Alzheimer's Disease. Int J Mol Sci 2021;22:9583. [PMID: 34502488 DOI: 10.3390/ijms22179583] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
27 Walczak-Nowicka ŁJ, Herbet M. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in their Pathogenesis. Int J Mol Sci 2021;22:9290. [PMID: 34502198 DOI: 10.3390/ijms22179290] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
28 Dadwal V, Gupta M. Recent developments in citrus bioflavonoid encapsulation to reinforce controlled antioxidant delivery and generate therapeutic uses: Review. Crit Rev Food Sci Nutr 2021;:1-21. [PMID: 34378460 DOI: 10.1080/10408398.2021.1961676] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
29 Valori CF, Possenti A, Brambilla L, Rossi D. Challenges and Opportunities of Targeting Astrocytes to Halt Neurodegenerative Disorders. Cells 2021;10:2019. [PMID: 34440788 DOI: 10.3390/cells10082019] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
30 Zhu X, Zhang YM, Zhang MY, Chen YJ, Liu YW. Hesperetin ameliorates diabetes-associated anxiety and depression-like behaviors in rats via activating Nrf2/ARE pathway. Metab Brain Dis 2021. [PMID: 34273043 DOI: 10.1007/s11011-021-00785-6] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
31 Khan A, Park TJ, Ikram M, Ahmad S, Ahmad R, Jo MG, Kim MO. Antioxidative and Anti-inflammatory Effects of Kojic Acid in Aβ-Induced Mouse Model of Alzheimer's Disease. Mol Neurobiol 2021. [PMID: 34255249 DOI: 10.1007/s12035-021-02460-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
32 Alizadeh Makvandi A, Khalili M, Roghani M, Amiri Moghaddam S. Hesperetin ameliorates electroconvulsive therapy-induced memory impairment through regulation of hippocampal BDNF and oxidative stress in a rat model of depression. J Chem Neuroanat 2021;117:102001. [PMID: 34246766 DOI: 10.1016/j.jchemneu.2021.102001] [Reference Citation Analysis]
33 Sakaki M, Harai K, Takahashi R, Amitani M, Amitani H, Takimoto Y, Inui A. Medicine and food with particular reference to chinpi, dried citrus peel, and a component of Ninjin'yoeito. Neuropeptides 2021;89:102166. [PMID: 34174540 DOI: 10.1016/j.npep.2021.102166] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
34 Li J, Wang T, Liu P, Yang F, Wang X, Zheng W, Sun W. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct 2021;12:3898-918. [PMID: 33977953 DOI: 10.1039/d0fo02736g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
35 Ikram M, Jo MG, Park TJ, Kim MW, Khan I, Jo MH, Kim MO. Oral Administration of Gintonin Protects the Brains of Mice against Aβ-Induced Alzheimer Disease Pathology: Antioxidant and Anti-Inflammatory Effects. Oxid Med Cell Longev 2021;2021:6635552. [PMID: 33953832 DOI: 10.1155/2021/6635552] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
36 Li Q, Xu Q, Tan J, Hu L, Ge C, Xu M. Carminic acid supplementation protects against fructose-induced kidney injury mainly through suppressing inflammation and oxidative stress via improving Nrf-2 signaling. Aging (Albany NY) 2021;13:10326-53. [PMID: 33819919 DOI: 10.18632/aging.202794] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Li X, Yu P, Yu Y, Xu T, Liu J, Cheng Y, Yang X, Cui X, Yin C, Liu Y. Hydrogen sulfide ameliorates high glucose-induced pro-inflammation factors in HT-22 cells: Involvement of SIRT1-mTOR/NF-κB signaling pathway. Int Immunopharmacol 2021;95:107545. [PMID: 33765609 DOI: 10.1016/j.intimp.2021.107545] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
38 Singh S, Nagalakshmi D, Sharma KK, Ravichandiran V. Natural antioxidants for neuroinflammatory disorders and possible involvement of Nrf2 pathway: A review. Heliyon 2021;7:e06216. [PMID: 33659743 DOI: 10.1016/j.heliyon.2021.e06216] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
39 Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of neurodegenerative diseases. Biomed Pharmacother 2021;138:111428. [PMID: 33667787 DOI: 10.1016/j.biopha.2021.111428] [Cited by in Crossref: 1] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
40 Khan MS, Ikram M, Park TJ, Kim MO. Pathology, Risk Factors, and Oxidative Damage Related to Type 2 Diabetes-Mediated Alzheimer's Disease and the Rescuing Effects of the Potent Antioxidant Anthocyanin. Oxid Med Cell Longev 2021;2021:4051207. [PMID: 33728019 DOI: 10.1155/2021/4051207] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
41 Ahmad S, Khan A, Ali W, Jo MH, Park J, Ikram M, Kim MO. Fisetin Rescues the Mice Brains Against D-Galactose-Induced Oxidative Stress, Neuroinflammation and Memory Impairment. Front Pharmacol 2021;12:612078. [PMID: 33716741 DOI: 10.3389/fphar.2021.612078] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
42 Arroyave-Ospina JC, Wu Z, Geng Y, Moshage H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants (Basel) 2021;10:174. [PMID: 33530432 DOI: 10.3390/antiox10020174] [Cited by in Crossref: 15] [Cited by in F6Publishing: 52] [Article Influence: 15.0] [Reference Citation Analysis]
43 Zhou Y, Chen Y, Xu C, Zhang H, Lin C. TLR4 Targeting as a Promising Therapeutic Strategy for Alzheimer Disease Treatment. Front Neurosci 2020;14:602508. [PMID: 33390886 DOI: 10.3389/fnins.2020.602508] [Cited by in Crossref: 3] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
44 Zhang L, Zhou Q, Zhou CL. RTA-408 protects against propofol-induced cognitive impairment in neonatal mice via the activation of Nrf2 and the inhibition of NF-κB p65 nuclear translocation. Brain Behav 2021;11:e01918. [PMID: 33295701 DOI: 10.1002/brb3.1918] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
45 Osama A, Zhang J, Yao J, Yao X, Fang J. Nrf2: a dark horse in Alzheimer's disease treatment. Ageing Res Rev 2020;64:101206. [PMID: 33144124 DOI: 10.1016/j.arr.2020.101206] [Cited by in Crossref: 42] [Cited by in F6Publishing: 52] [Article Influence: 21.0] [Reference Citation Analysis]
46 Qu Z, Sun J, Zhang W, Yu J, Zhuang C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease. Free Radical Biology and Medicine 2020;159:87-102. [DOI: 10.1016/j.freeradbiomed.2020.06.028] [Cited by in Crossref: 11] [Cited by in F6Publishing: 26] [Article Influence: 5.5] [Reference Citation Analysis]
47 Borges A, Freitas V, Mateus N, Fernandes I, Oliveira J. Solid Lipid Nanoparticles as Carriers of Natural Phenolic Compounds. Antioxidants (Basel) 2020;9:E998. [PMID: 33076501 DOI: 10.3390/antiox9100998] [Cited by in Crossref: 16] [Cited by in F6Publishing: 29] [Article Influence: 8.0] [Reference Citation Analysis]
48 Ahmad R, Khan A, Lee HJ, Ur Rehman I, Khan I, Alam SI, Kim MO. Lupeol, a Plant-Derived Triterpenoid, Protects Mice Brains against Aβ-Induced Oxidative Stress and Neurodegeneration. Biomedicines 2020;8:E380. [PMID: 32993092 DOI: 10.3390/biomedicines8100380] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
49 Ikram M, Park TJ, Ali T, Kim MO. Antioxidant and Neuroprotective Effects of Caffeine against Alzheimer's and Parkinson's Disease: Insight into the Role of Nrf-2 and A2AR Signaling. Antioxidants (Basel) 2020;9:E902. [PMID: 32971922 DOI: 10.3390/antiox9090902] [Cited by in Crossref: 7] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
50 Federico S, Pozzetti L, Papa A, Carullo G, Gemma S, Butini S, Campiani G, Relitti N. Modulation of the Innate Immune Response by Targeting Toll-like Receptors: A Perspective on Their Agonists and Antagonists. J Med Chem 2020;63:13466-513. [PMID: 32845153 DOI: 10.1021/acs.jmedchem.0c01049] [Cited by in Crossref: 20] [Cited by in F6Publishing: 39] [Article Influence: 10.0] [Reference Citation Analysis]
51 Scoditti E. Neuroinflammation and Neurodegeneration: The Promising Protective Role of the Citrus Flavanone Hesperetin. Nutrients 2020;12:E2336. [PMID: 32764233 DOI: 10.3390/nu12082336] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
52 Gao J, Chen N, Li N, Xu F, Wang W, Lei Y, Shi J, Gong Q. Neuroprotective Effects of Trilobatin, a Novel Naturally Occurring Sirt3 Agonist from Lithocarpus polystachyus Rehd., Mitigate Cerebral Ischemia/Reperfusion Injury: Involvement of TLR4/NF-κB and Nrf2/Keap-1 Signaling. Antioxidants & Redox Signaling 2020;33:117-43. [DOI: 10.1089/ars.2019.7825] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
53 Khan A, Ikram M, Hahm JR, Kim MO. Antioxidant and Anti-Inflammatory Effects of Citrus Flavonoid Hesperetin: Special Focus on Neurological Disorders. Antioxidants (Basel) 2020;9:E609. [PMID: 32664395 DOI: 10.3390/antiox9070609] [Cited by in Crossref: 14] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
54 Jaiswal P, Mandal M, Mishra A. Effect of hesperidin on fluoride-induced neurobehavioral and biochemical changes in rats. J Biochem Mol Toxicol 2020;34:e22575. [PMID: 32627286 DOI: 10.1002/jbt.22575] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
55 Atabaki R, Roohbakhsh A, Moghimi A, Mehri S. Protective effects of maternal administration of curcumin and hesperidin in the rat offspring following repeated febrile seizure: Role of inflammation and TLR4. Int Immunopharmacol 2020;86:106720. [PMID: 32585605 DOI: 10.1016/j.intimp.2020.106720] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
56 Khan MS, Khan A, Ahmad S, Ahmad R, Rehman IUR, Ikram M, Kim MO. Inhibition of JNK Alleviates Chronic Hypoperfusion-Related Ischemia Induces Oxidative Stress and Brain Degeneration via Nrf2/HO-1 and NF-κB Signaling. Oxid Med Cell Longev 2020;2020:5291852. [PMID: 32617137 DOI: 10.1155/2020/5291852] [Cited by in Crossref: 8] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
57 Ali W, Ikram M, Park HY, Jo MG, Ullah R, Ahmad S, Abid NB, Kim MO. Oral Administration of Alpha Linoleic Acid Rescues Aβ-Induced Glia-Mediated Neuroinflammation and Cognitive Dysfunction in C57BL/6N Mice. Cells 2020;9:E667. [PMID: 32182943 DOI: 10.3390/cells9030667] [Cited by in Crossref: 19] [Cited by in F6Publishing: 28] [Article Influence: 9.5] [Reference Citation Analysis]
58 Welcome MO. Neuroinflammation in CNS diseases: Molecular mechanisms and the therapeutic potential of plant derived bioactive molecules. PharmaNutrition 2020;11:100176. [DOI: 10.1016/j.phanu.2020.100176] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
59 Paudel YN, Angelopoulou E, Piperi C, Othman I, Aamir K, Shaikh MF. Impact of HMGB1, RAGE, and TLR4 in Alzheimer's Disease (AD): From Risk Factors to Therapeutic Targeting. Cells 2020;9:E383. [PMID: 32046119 DOI: 10.3390/cells9020383] [Cited by in Crossref: 75] [Cited by in F6Publishing: 65] [Article Influence: 37.5] [Reference Citation Analysis]
60 Hahm JR, Jo MH, Ullah R, Kim MW, Kim MO. Metabolic Stress Alters Antioxidant Systems, Suppresses the Adiponectin Receptor 1 and Induces Alzheimer's Like Pathology in Mice Brain. Cells 2020;9:E249. [PMID: 31963819 DOI: 10.3390/cells9010249] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
61 Li H, Lan T, Yun C, Yang K, Du Z, Luo X, Hao E, Deng J. Mangiferin exerts neuroprotective activity against lead-induced toxicity and oxidative stress via Nrf2 pathway. Chinese Herbal Medicines 2020;12:36-46. [DOI: 10.1016/j.chmed.2019.12.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
62 Badshah H, Ikram M, Ali W, Ahmad S, Hahm JR, Kim MO. Caffeine May Abrogate LPS-Induced Oxidative Stress and Neuroinflammation by Regulating Nrf2/TLR4 in Adult Mouse Brains. Biomolecules 2019;9:E719. [PMID: 31717470 DOI: 10.3390/biom9110719] [Cited by in Crossref: 28] [Cited by in F6Publishing: 40] [Article Influence: 9.3] [Reference Citation Analysis]
63 Zhang Y, Zheng Y, Shi W, Guo Y, Xu T, Li Z, Huang C, Li J. Design, Synthesis and Investigation of the Potential Anti-Inflammatory Activity of 7-O-Amide Hesperetin Derivatives. Molecules 2019;24:E3663. [PMID: 31614601 DOI: 10.3390/molecules24203663] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
64 Khan M, Ullah R, Rehman SU, Shah SA, Saeed K, Muhammad T, Park HY, Jo MH, Choe K, Rutten BPF, Kim MO. 17β-Estradiol Modulates SIRT1 and Halts Oxidative Stress-Mediated Cognitive Impairment in a Male Aging Mouse Model. Cells 2019;8:E928. [PMID: 31430865 DOI: 10.3390/cells8080928] [Cited by in Crossref: 31] [Cited by in F6Publishing: 39] [Article Influence: 10.3] [Reference Citation Analysis]
65 Rehman SU, Ikram M, Ullah N, Alam SI, Park HY, Badshah H, Choe K, Kim MO. Neurological Enhancement Effects of Melatonin against Brain Injury-Induced Oxidative Stress, Neuroinflammation, and Neurodegeneration via AMPK/CREB Signaling. Cells 2019;8:E760. [PMID: 31330909 DOI: 10.3390/cells8070760] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
66 Rehman SU, Ikram M, Ullah N, Alam SI, Park HY, Badshah H, Choe K, Kim MO. Neurological Enhancement Effects of Melatonin against Brain Injury-Induced Oxidative Stress, Neuroinflammation, and Neurodegeneration via AMPK/CREB Signaling. Cells 2019;8:E760. [PMID: 31330909 DOI: 10.3390/cells8070760] [Cited by in Crossref: 33] [Cited by in F6Publishing: 66] [Article Influence: 11.0] [Reference Citation Analysis]
67 Göttle P, Förster M, Weyers V, Küry P, Rejdak K, Hartung HP, Kremer D. An unmet clinical need: roads to remyelination in MS. Neurol Res Pract 2019;1:21. [PMID: 33324887 DOI: 10.1186/s42466-019-0026-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
68 Ahmad A, Ali T, Rehman SU, Kim MO. Phytomedicine-Based Potent Antioxidant, Fisetin Protects CNS-Insult LPS-Induced Oxidative Stress-Mediated Neurodegeneration and Memory Impairment. J Clin Med 2019;8:E850. [PMID: 31207963 DOI: 10.3390/jcm8060850] [Cited by in Crossref: 14] [Cited by in F6Publishing: 21] [Article Influence: 4.7] [Reference Citation Analysis]
69 Khan M, Rutten BPF, Kim MO. MST1 Regulates Neuronal Cell Death via JNK/Casp3 Signaling Pathway in HFD Mouse Brain and HT22 Cells. Int J Mol Sci 2019;20:E2504. [PMID: 31117242 DOI: 10.3390/ijms20102504] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
70 Ikram M, Saeed K, Khan A, Muhammad T, Khan MS, Jo MG, Rehman SU, Kim MO. Natural Dietary Supplementation of Curcumin Protects Mice Brains against Ethanol-Induced Oxidative Stress-Mediated Neurodegeneration and Memory Impairment via Nrf2/TLR4/RAGE Signaling. Nutrients 2019;11:E1082. [PMID: 31096703 DOI: 10.3390/nu11051082] [Cited by in Crossref: 57] [Cited by in F6Publishing: 56] [Article Influence: 19.0] [Reference Citation Analysis]
71 Khan A, Ikram M, Muhammad T, Park J, Kim MO. Caffeine Modulates Cadmium-Induced Oxidative Stress, Neuroinflammation, and Cognitive Impairments by Regulating Nrf-2/HO-1 In Vivo and In Vitro. J Clin Med 2019;8:E680. [PMID: 31091792 DOI: 10.3390/jcm8050680] [Cited by in Crossref: 38] [Cited by in F6Publishing: 50] [Article Influence: 12.7] [Reference Citation Analysis]
72 Muhammad T, Ikram M, Ullah R, Rehman SU, Kim MO. Hesperetin, a Citrus Flavonoid, Attenuates LPS-Induced Neuroinflammation, Apoptosis and Memory Impairments by Modulating TLR4/NF-κB Signaling. Nutrients 2019;11:E648. [PMID: 30884890 DOI: 10.3390/nu11030648] [Cited by in Crossref: 90] [Cited by in F6Publishing: 149] [Article Influence: 30.0] [Reference Citation Analysis]
73 Alam SI, Rehman SU, Kim MO. Nicotinamide Improves Functional Recovery via Regulation of the RAGE/JNK/NF-κB Signaling Pathway after Brain Injury. J Clin Med 2019;8:E271. [PMID: 30813383 DOI: 10.3390/jcm8020271] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]