BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vinuesa A, Bentivegna M, Calfa G, Filipello F, Pomilio C, Bonaventura MM, Lux-Lantos V, Matzkin ME, Gregosa A, Presa J, Matteoli M, Beauquis J, Saravia F. Early Exposure to a High-Fat Diet Impacts on Hippocampal Plasticity: Implication of Microglia-Derived Exosome-like Extracellular Vesicles. Mol Neurobiol 2019;56:5075-94. [PMID: 30474797 DOI: 10.1007/s12035-018-1435-8] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Soch A, Sominsky L, De Luca SN, Spencer SJ. Obesity after neonatal overfeeding is independent of hypothalamic microgliosis. J Neuroendocrinol 2019;31. [DOI: 10.1111/jne.12757] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
2 Losurdo M, Grilli M. Extracellular Vesicles, Influential Players of Intercellular Communication within Adult Neurogenic Niches. Int J Mol Sci 2020;21:E8819. [PMID: 33233420 DOI: 10.3390/ijms21228819] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
3 Abd-Allah H, Nasr M, Ahmed-Farid OAH, El-Marasy SA, Bakeer RM, Ahmed RF. Biological and Pharmacological Characterization of Ascorbic Acid and Nicotinamide Chitosan Nanoparticles against Insulin-Resistance-Induced Cognitive Defects: A Comparative Study. ACS Omega 2021;6:3587-601. [PMID: 33585742 DOI: 10.1021/acsomega.0c05096] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Reilly AM, Tsai AP, Lin PB, Ericsson AC, Oblak AL, Ren H. Metabolic Defects Caused by High-Fat Diet Modify Disease Risk through Inflammatory and Amyloidogenic Pathways in a Mouse Model of Alzheimer's Disease. Nutrients 2020;12:E2977. [PMID: 33003412 DOI: 10.3390/nu12102977] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
5 Zhao N, Deng Q, Zhu C, Zhang B. Application of Extracellular Vesicles in Aquatic Animals: A Review of the Latest Decade. Reviews in Fisheries Science & Aquaculture. [DOI: 10.1080/23308249.2021.1985429] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Presa JL, Saravia F, Bagi Z, Filosa JA. Vasculo-Neuronal Coupling and Neurovascular Coupling at the Neurovascular Unit: Impact of Hypertension. Front Physiol 2020;11:584135. [PMID: 33101063 DOI: 10.3389/fphys.2020.584135] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
7 Kulas JA, Weigel TK, Ferris HA. Insulin resistance and impaired lipid metabolism as a potential link between diabetes and Alzheimer's disease. Drug Dev Res 2020;81:194-205. [PMID: 32022298 DOI: 10.1002/ddr.21643] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
8 Oyarce K, Cepeda MY, Lagos R, Garrido C, Vega-letter AM, Garcia-robles M, Luz-crawford P, Elizondo-vega R. Neuroprotective and Neurotoxic Effects of Glial-Derived Exosomes. Front Cell Neurosci 2022;16:920686. [DOI: 10.3389/fncel.2022.920686] [Reference Citation Analysis]
9 Al-dalaeen A, Ahram M, Al-domi H. Effects of obesity on hippocampus function: Synaptic plasticity hypothesis. Obesity Medicine 2020;19:100246. [DOI: 10.1016/j.obmed.2020.100246] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Zhuang H, Yao X, Li H, Li Q, Yang C, Wang C, Xu D, Xiao Y, Gao Y, Gao J, Bi M, Liu R, Teng G, Liu L. Long-term high-fat diet consumption by mice throughout adulthood induces neurobehavioral alterations and hippocampal neuronal remodeling accompanied by augmented microglial lipid accumulation. Brain Behav Immun 2021;100:155-71. [PMID: 34848340 DOI: 10.1016/j.bbi.2021.11.018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Augusto-Oliveira M, Verkhratsky A. Lifestyle-dependent microglial plasticity: training the brain guardians. Biol Direct 2021;16:12. [PMID: 34353376 DOI: 10.1186/s13062-021-00297-4] [Reference Citation Analysis]
12 Natunen T, Martiskainen H, Marttinen M, Gabbouj S, Koivisto H, Kemppainen S, Kaipainen S, Takalo M, Svobodová H, Leppänen L, Kemiläinen B, Ryhänen S, Kuulasmaa T, Rahunen E, Juutinen S, Mäkinen P, Miettinen P, Rauramaa T, Pihlajamäki J, Haapasalo A, Leinonen V, Tanila H, Hiltunen M. Diabetic phenotype in mouse and humans reduces the number of microglia around β-amyloid plaques. Mol Neurodegener 2020;15:66. [PMID: 33168021 DOI: 10.1186/s13024-020-00415-2] [Reference Citation Analysis]
13 Pomilio C, Pérez NG, Calandri I, Crivelli L, Allegri R, Sevlever G, Saravia F; ADNI Alzheimer’s Disease Neuroimaging Initiative. Diabetic patients treated with metformin during early stages of Alzheimer's disease show a better integral performance: data from ADNI study. Geroscience 2022. [PMID: 35445359 DOI: 10.1007/s11357-022-00568-6] [Reference Citation Analysis]
14 Buie JJ, Watson LS, Smith CJ, Sims-Robinson C. Obesity-related cognitive impairment: The role of endothelial dysfunction. Neurobiol Dis 2019;132:104580. [PMID: 31454547 DOI: 10.1016/j.nbd.2019.104580] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
15 Alexaki VI. The Impact of Obesity on Microglial Function: Immune, Metabolic and Endocrine Perspectives. Cells 2021;10:1584. [PMID: 34201844 DOI: 10.3390/cells10071584] [Reference Citation Analysis]
16 Simeone P, Bologna G, Lanuti P, Pierdomenico L, Guagnano MT, Pieragostino D, Del Boccio P, Vergara D, Marchisio M, Miscia S, Mariani-Costantini R. Extracellular Vesicles as Signaling Mediators and Disease Biomarkers across Biological Barriers. Int J Mol Sci 2020;21:E2514. [PMID: 32260425 DOI: 10.3390/ijms21072514] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 17.0] [Reference Citation Analysis]
17 Murray S, Chen EY. Examining Adolescence as a Sensitive Period for High-Fat, High-Sugar Diet Exposure: A Systematic Review of the Animal Literature. Front Neurosci 2019;13:1108. [PMID: 31708722 DOI: 10.3389/fnins.2019.01108] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
18 Shepilov D, Kovalenko T, Osadchenko I, Smozhanyk K, Marungruang N, Ushakova G, Muraviova D, Hållenius F, Prykhodko O, Skibo G. Varying Dietary Component Ratios and Lingonberry Supplementation May Affect the Hippocampal Structure of ApoE–/– Mice. Front Nutr 2022;9:565051. [DOI: 10.3389/fnut.2022.565051] [Reference Citation Analysis]
19 Leyh J, Winter K, Reinicke M, Ceglarek U, Bechmann I, Landmann J. Long-term diet-induced obesity does not lead to learning and memory impairment in adult mice. PLoS One 2021;16:e0257921. [PMID: 34587222 DOI: 10.1371/journal.pone.0257921] [Reference Citation Analysis]
20 Pistono C, Bister N, Stanová I, Malm T. Glia-Derived Extracellular Vesicles: Role in Central Nervous System Communication in Health and Disease. Front Cell Dev Biol 2020;8:623771. [PMID: 33569385 DOI: 10.3389/fcell.2020.623771] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
21 Li T, Tan X, Li S, Al-Nusaif M, Le W. Role of Glia-Derived Extracellular Vesicles in Neurodegenerative Diseases. Front Aging Neurosci 2021;13:765395. [PMID: 34744700 DOI: 10.3389/fnagi.2021.765395] [Reference Citation Analysis]
22 Shaimardanova AA, Solovyeva VV, Chulpanova DS, James V, Kitaeva KV, Rizvanov AA. Extracellular vesicles in the diagnosis and treatment of central nervous system diseases. Neural Regen Res 2020;15:586-96. [PMID: 31638080 DOI: 10.4103/1673-5374.266908] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 13.5] [Reference Citation Analysis]
23 Vargas-Rodríguez I, Reyes-Castro LA, Pacheco-López G, Lomas-Soria C, Zambrano E, Díaz-Ruíz A, Diaz-Cintra S. POSTNATAL EXPOSURE TO LIPOPOLYSACCHARIDE COMBINED WITH HIGH-FAT DIET CONSUMPTION INDUCES IMMUNE TOLERANCE WITHOUT PREVENTION IN SPATIAL WORKING MEMORY IMPAIRMENT. Behav Brain Res 2022;:113776. [PMID: 35120930 DOI: 10.1016/j.bbr.2022.113776] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Wu L, Li S, Pang S, Zhang B, Wang J, He B, Lv L, Wang W, Zhao N, Zhang Y. Effects of lead exposure on the activation of microglia in mice fed with high-fat diets. Environ Toxicol 2021;36:1923-31. [PMID: 34156151 DOI: 10.1002/tox.23312] [Reference Citation Analysis]
25 Nassir CMNCM, Ghazali MM, Hashim S, Idris NS, Yuen LS, Hui WJ, Norman HH, Gau CH, Jayabalan N, Na Y, Feng L, Ong LK, Abdul Hamid H, Ahamed HN, Mustapha M. Diets and Cellular-Derived Microparticles: Weighing a Plausible Link With Cerebral Small Vessel Disease. Front Cardiovasc Med 2021;8:632131. [PMID: 33718454 DOI: 10.3389/fcvm.2021.632131] [Reference Citation Analysis]
26 Yao X, Yang C, Wang C, Li H, Zhao J, Kang X, Liu Z, Chen L, Chen X, Pu T, Li Q, Liu L. High-Fat Diet Consumption in Adolescence Induces Emotional Behavior Alterations and Hippocampal Neurogenesis Deficits Accompanied by Excessive Microglial Activation. IJMS 2022;23:8316. [DOI: 10.3390/ijms23158316] [Reference Citation Analysis]
27 Lee TH, Yau SY. From Obesity to Hippocampal Neurodegeneration: Pathogenesis and Non-Pharmacological Interventions. Int J Mol Sci 2020;22:E201. [PMID: 33379163 DOI: 10.3390/ijms22010201] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
28 Verma V, Paul A, Amrapali Vishwanath A, Vaidya B, Clement JP. Understanding intellectual disability and autism spectrum disorders from common mouse models: synapses to behaviour. Open Biol 2019;9:180265. [PMID: 31185809 DOI: 10.1098/rsob.180265] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
29 Kumari M, Anji A. Small but Mighty-Exosomes, Novel Intercellular Messengers in Neurodegeneration. Biology (Basel) 2022;11:413. [PMID: 35336787 DOI: 10.3390/biology11030413] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Crispino M, Trinchese G, Penna E, Cimmino F, Catapano A, Villano I, Perrone-Capano C, Mollica MP. Interplay between Peripheral and Central Inflammation in Obesity-Promoted Disorders: The Impact on Synaptic Mitochondrial Functions. Int J Mol Sci 2020;21:E5964. [PMID: 32825115 DOI: 10.3390/ijms21175964] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
31 Vinuesa A, Pomilio C, Gregosa A, Bentivegna M, Presa J, Bellotto M, Saravia F, Beauquis J. Inflammation and Insulin Resistance as Risk Factors and Potential Therapeutic Targets for Alzheimer's Disease. Front Neurosci 2021;15:653651. [PMID: 33967682 DOI: 10.3389/fnins.2021.653651] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Ishidori H, Okihara H, Ogawa T, Abe Y, Kato C, Aung PT, Fujita A, Kokai S, Ono T. Nasal obstruction during the growth period modulates the Wnt/β-catenin pathway and brain-derived neurotrophic factor production in association with tyrosine kinase receptor B mRNA reduction in mouse hippocampus. Eur J Neurosci 2021. [PMID: 34842314 DOI: 10.1111/ejn.15547] [Reference Citation Analysis]