BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Garcez ML, Mina F, Bellettini-santos T, da Luz AP, Schiavo GL, Macieski JMC, Medeiros EB, Marques AO, Magnus NQ, Budni J. The Involvement of NLRP3 on the Effects of Minocycline in an AD-Like Pathology Induced by β-Amyloid Oligomers Administered to Mice. Mol Neurobiol 2019;56:2606-17. [DOI: 10.1007/s12035-018-1211-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Zhang G, Wang Z, Hu H, Zhao M, Sun L. Microglia in Alzheimer's Disease: A Target for Therapeutic Intervention. Front Cell Neurosci 2021;15:749587. [PMID: 34899188 DOI: 10.3389/fncel.2021.749587] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Wang B, Lin X, Zhou J, Xie C, Li C, Dong R, Zhang G, Sun X, Wang M, Bi Y. Insulin-like growth factor-1 improves postoperative cognitive dysfunction following splenectomy in aged rats. Exp Ther Med 2021;21:215. [PMID: 33574912 DOI: 10.3892/etm.2021.9647] [Reference Citation Analysis]
3 Cazarin CA, Dalmagro AP, Gonçalves AE, Boeing T, Silva LMD, Corrêa R, Klein-Júnior LC, Pinto BC, Lorenzett TS, Sobrinho TUDC, Fátima Â, Lage TCA, Fernandes SA, Souza MM. Usnic acid enantiomers restore cognitive deficits and neurochemical alterations induced by Aβ1-42 in mice. Behav Brain Res 2021;397:112945. [PMID: 33022354 DOI: 10.1016/j.bbr.2020.112945] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Cucos CA, Dobre M, Dragnea EM, Manda G, Milanesi E. Increased MYD88 blood transcript in a mouse model of Alzheimer’s disease. BMC Neurosci 2022;23. [DOI: 10.1186/s12868-022-00699-8] [Reference Citation Analysis]
5 Azam S, Haque ME, Balakrishnan R, Kim IS, Choi DK. The Ageing Brain: Molecular and Cellular Basis of Neurodegeneration. Front Cell Dev Biol 2021;9:683459. [PMID: 34485280 DOI: 10.3389/fcell.2021.683459] [Reference Citation Analysis]
6 Cankaya S, Cankaya B, Kilic U, Kilic E, Yulug B. The therapeutic role of minocycline in Parkinson's disease. Drugs Context 2019;8:212553. [PMID: 30873213 DOI: 10.7573/dic.212553] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
7 Xu J, Wang K, Yuan Y, Li H, Zhang R, Guan S, Wang L. A Novel Peroxidase Mimics and Ameliorates Alzheimer's Disease-Related Pathology and Cognitive Decline in Mice. Int J Mol Sci 2018;19:E3304. [PMID: 30352982 DOI: 10.3390/ijms19113304] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
8 Song X, Chen J, Hou Z, Xie N. Antimicrobial therapy and the potential mechanisms in Alzheimer's disease. Neurosci Lett 2021;741:135464. [PMID: 33166642 DOI: 10.1016/j.neulet.2020.135464] [Reference Citation Analysis]
9 Fu L, Liu C, Chen L, Lv Y, Meng G, Hu M, Long Y, Hong H, Tang S. Protective Effects of 1-Methylnicotinamide on Aβ1–42-Induced Cognitive Deficits, Neuroinflammation and Apoptosis in Mice. J Neuroimmune Pharmacol 2019;14:401-12. [DOI: 10.1007/s11481-018-09830-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
10 Chen J, Mao K, Yu H, Wen Y, She H, Zhang H, Liu L, Li M, Li W, Zou F. p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease. J Neuroinflammation 2021;18:295. [PMID: 34930303 DOI: 10.1186/s12974-021-02349-y] [Reference Citation Analysis]
11 de Oliveira J, Kucharska E, Garcez ML, Rodrigues MS, Quevedo J, Moreno-Gonzalez I, Budni J. Inflammatory Cascade in Alzheimer's Disease Pathogenesis: A Review of Experimental Findings. Cells 2021;10:2581. [PMID: 34685563 DOI: 10.3390/cells10102581] [Reference Citation Analysis]
12 Zhou X, Qiu W, Yu L, Pan R, Teng J, Sang Z, Law BY, Zhao Y, Zhang L, Yan L, Tang Y, Sun X, Wong VKW, Yu C, Wu J, Qin D, Wu A. Targeting microglial autophagic degradation of the NLRP3 inflammasome for identification of thonningianin A in Alzheimer’s disease. Inflamm Regener 2022;42. [DOI: 10.1186/s41232-022-00209-7] [Reference Citation Analysis]
13 Zhao J, Shi Q, Tian H, Li Y, Liu Y, Xu Z, Robert A, Liu Q, Meunier B. TDMQ20, a Specific Copper Chelator, Reduces Memory Impairments in Alzheimer's Disease Mouse Models. ACS Chem Neurosci 2021;12:140-9. [PMID: 33322892 DOI: 10.1021/acschemneuro.0c00621] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
14 Desruelle AV, Louge P, Richard S, Blatteau JE, Gaillard S, De Maistre S, David H, Risso JJ, Vallée N. Demonstration by Infra-Red Imaging of a Temperature Control Defect in a Decompression Sickness Model Testing Minocycline. Front Physiol 2019;10:933. [PMID: 31396102 DOI: 10.3389/fphys.2019.00933] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Althafar ZM. Targeting Microglia in Alzheimer’s Disease: From Molecular Mechanisms to Potential Therapeutic Targets for Small Molecules. Molecules 2022;27:4124. [DOI: 10.3390/molecules27134124] [Reference Citation Analysis]
16 Momtazmanesh S, Perry G, Rezaei N. Toll-like receptors in Alzheimer's disease. Journal of Neuroimmunology 2020;348:577362. [DOI: 10.1016/j.jneuroim.2020.577362] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
17 Westwell-Roper C, Verchere CB. Modulation of Innate Immunity by Amyloidogenic Peptides. Trends Immunol 2019;40:762-80. [PMID: 31320280 DOI: 10.1016/j.it.2019.06.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease. Ageing Res Rev 2020;64:101192. [PMID: 33059089 DOI: 10.1016/j.arr.2020.101192] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 17.5] [Reference Citation Analysis]