BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Switonski PM, Szlachcic WJ, Gabka A, Krzyzosiak WJ, Figiel M. Mouse models of polyglutamine diseases in therapeutic approaches: review and data table. Part II. Mol Neurobiol 2012;46:430-66. [PMID: 22944909 DOI: 10.1007/s12035-012-8316-3] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Nance MA. Genetics of Huntington disease. Huntington Disease. Elsevier; 2017. pp. 3-14. [DOI: 10.1016/b978-0-12-801893-4.00001-8] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
2 Zhou ZD, Jankovic J, Ashizawa T, Tan EK. Neurodegenerative diseases associated with non-coding CGG tandem repeat expansions. Nat Rev Neurol 2022. [PMID: 35022573 DOI: 10.1038/s41582-021-00612-7] [Reference Citation Analysis]
3 Dominguez C, Munoz-sanjuan I. Foundation-Directed Therapeutic Development in Huntington’s Disease: Miniperspective. J Med Chem 2014;57:5479-88. [DOI: 10.1021/jm4009295] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
4 . A comprehensive database of poly(Q) mouse models. Nat Methods 2012;9:1048-1048. [DOI: 10.1038/nmeth.2234] [Reference Citation Analysis]
5 Csobonyeiova M, Polak S, Danisovic L. Recent Overview of the Use of iPSCs Huntington's Disease Modeling and Therapy. Int J Mol Sci 2020;21:E2239. [PMID: 32213859 DOI: 10.3390/ijms21062239] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
6 Cleary JD, Ranum LP. New developments in RAN translation: insights from multiple diseases. Curr Opin Genet Dev 2017;44:125-34. [PMID: 28365506 DOI: 10.1016/j.gde.2017.03.006] [Cited by in Crossref: 54] [Cited by in F6Publishing: 51] [Article Influence: 10.8] [Reference Citation Analysis]
7 Nguyen L, Cleary JD, Ranum LPW. Repeat-Associated Non-ATG Translation: Molecular Mechanisms and Contribution to Neurological Disease. Annu Rev Neurosci 2019;42:227-47. [PMID: 30909783 DOI: 10.1146/annurev-neuro-070918-050405] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 11.7] [Reference Citation Analysis]
8 Weydt P, Dupuis L, Petersen Å. Thermoregulatory disorders in Huntington disease. Handb Clin Neurol 2018;157:761-75. [PMID: 30459039 DOI: 10.1016/B978-0-444-64074-1.00047-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
9 Khan E, Mishra SK, Mishra R, Mishra A, Kumar A. Discovery of a potent small molecule inhibiting Huntington's disease (HD) pathogenesis via targeting CAG repeats RNA and Poly Q protein. Sci Rep 2019;9:16872. [PMID: 31728006 DOI: 10.1038/s41598-019-53410-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
10 Adegbuyiro A, Sedighi F, Pilkington AW 4th, Groover S, Legleiter J. Proteins Containing Expanded Polyglutamine Tracts and Neurodegenerative Disease. Biochemistry 2017;56:1199-217. [PMID: 28170216 DOI: 10.1021/acs.biochem.6b00936] [Cited by in Crossref: 72] [Cited by in F6Publishing: 65] [Article Influence: 14.4] [Reference Citation Analysis]
11 Khan E, Biswas S, Mishra SK, Mishra R, Samanta S, Mishra A, Tawani A, Kumar A. Rationally designed small molecules targeting toxic CAG repeat RNA that causes Huntington's disease (HD) and spinocerebellar ataxia (SCAs). Biochimie 2019;163:21-32. [DOI: 10.1016/j.biochi.2019.05.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
12 Switonski PM, Szlachcic WJ, Krzyzosiak WJ, Figiel M. A new humanized ataxin-3 knock-in mouse model combines the genetic features, pathogenesis of neurons and glia and late disease onset of SCA3/MJD. Neurobiol Dis 2015;73:174-88. [PMID: 25301414 DOI: 10.1016/j.nbd.2014.09.020] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
13 Szlachcic WJ, Switonski PM, Kurkowiak M, Wiatr K, Figiel M. Mouse polyQ database: a new online resource for research using mouse models of neurodegenerative diseases. Mol Brain 2015;8:69. [PMID: 26515641 DOI: 10.1186/s13041-015-0160-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
14 Mrzljak L, Munoz-Sanjuan I. Therapeutic Strategies for Huntington's Disease. Curr Top Behav Neurosci 2015;22:161-201. [PMID: 24277342 DOI: 10.1007/7854_2013_250] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
15 Wiatr K, Piasecki P, Marczak Ł, Wojciechowski P, Kurkowiak M, Płoski R, Rydzanicz M, Handschuh L, Jungverdorben J, Brüstle O, Figlerowicz M, Figiel M. Altered Levels of Proteins and Phosphoproteins, in the Absence of Early Causative Transcriptional Changes, Shape the Molecular Pathogenesis in the Brain of Young Presymptomatic Ki91 SCA3/MJD Mouse. Mol Neurobiol 2019;56:8168-202. [PMID: 31201651 DOI: 10.1007/s12035-019-01643-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
16 Santarriaga S, Petersen A, Ndukwe K, Brandt A, Gerges N, Bruns Scaglione J, Scaglione KM. The Social Amoeba Dictyostelium discoideum Is Highly Resistant to Polyglutamine Aggregation. J Biol Chem 2015;290:25571-8. [PMID: 26330554 DOI: 10.1074/jbc.M115.676247] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
17 Świtońska-Kurkowska K, Krist B, Delimata J, Figiel M. Juvenile Huntington's Disease and Other PolyQ Diseases, Update on Neurodevelopmental Character and Comparative Bioinformatic Review of Transcriptomic and Proteomic Data. Front Cell Dev Biol 2021;9:642773. [PMID: 34277598 DOI: 10.3389/fcell.2021.642773] [Reference Citation Analysis]
18 Duarte-Silva S, Maciel P. Pharmacological Therapies for Machado-Joseph Disease. Adv Exp Med Biol 2018;1049:369-94. [PMID: 29427114 DOI: 10.1007/978-3-319-71779-1_19] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
19 Bañez-Coronel M, Ayhan F, Tarabochia AD, Zu T, Perez BA, Tusi SK, Pletnikova O, Borchelt DR, Ross CA, Margolis RL, Yachnis AT, Troncoso JC, Ranum LP. RAN Translation in Huntington Disease. Neuron 2015;88:667-77. [PMID: 26590344 DOI: 10.1016/j.neuron.2015.10.038] [Cited by in Crossref: 179] [Cited by in F6Publishing: 164] [Article Influence: 29.8] [Reference Citation Analysis]
20 Gatto RG, Weissmann C, Amin M, Angeles-López QD, García-Lara L, Castellanos LCS, Deyoung D, Segovia J, Mareci TH, Uchitel OD, Magin RL. Evaluation of early microstructural changes in the R6/1 mouse model of Huntington's disease by ultra-high field diffusion MR imaging. Neurobiol Aging 2021;102:32-49. [PMID: 33765430 DOI: 10.1016/j.neurobiolaging.2021.02.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Mochly-Rosen D, Disatnik MH, Qi X. The challenge in translating basic research discoveries to treatment of Huntington disease. Rare Dis 2014;2:e28637. [PMID: 25054095 DOI: 10.4161/rdis.28637] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
22 Stricker-shaver J, Novati A, Yu-taeger L, Nguyen HP. Genetic Rodent Models of Huntington Disease. In: Nóbrega C, Pereira de Almeida L, editors. Polyglutamine Disorders. Cham: Springer International Publishing; 2018. pp. 29-57. [DOI: 10.1007/978-3-319-71779-1_2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
23 Neves-Carvalho A, Duarte-Silva S, Teixeira-Castro A, Maciel P. Polyglutamine spinocerebellar ataxias: emerging therapeutic targets. Expert Opin Ther Targets 2020;24:1099-119. [PMID: 32962458 DOI: 10.1080/14728222.2020.1827394] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
24 Albanese S, Greco A, Auletta L, Mancini M. Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component. Brain Imaging Behav 2018;12:1160-96. [PMID: 29075922 DOI: 10.1007/s11682-017-9770-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
25 Gupta S, Verma S, Mantri S, Berman NE, Sandhir R. Targeting MicroRNAs in Prevention and Treatment of Neurodegenerative Disorders. Drug Dev Res 2015;76:397-418. [PMID: 26359796 DOI: 10.1002/ddr.21277] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
26 Guo X, Disatnik MH, Monbureau M, Shamloo M, Mochly-Rosen D, Qi X. Inhibition of mitochondrial fragmentation diminishes Huntington's disease-associated neurodegeneration. J Clin Invest 2013;123:5371-88. [PMID: 24231356 DOI: 10.1172/JCI70911] [Cited by in Crossref: 205] [Cited by in F6Publishing: 135] [Article Influence: 22.8] [Reference Citation Analysis]
27 Olejniczak M, Urbanek MO, Krzyzosiak WJ. The role of the immune system in triplet repeat expansion diseases. Mediators Inflamm 2015;2015:873860. [PMID: 25873774 DOI: 10.1155/2015/873860] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
28 Yu S, Liang Y, Palacino J, Difiglia M, Lu B. Drugging unconventional targets: insights from Huntington's disease. Trends Pharmacol Sci 2014;35:53-62. [PMID: 24388390 DOI: 10.1016/j.tips.2013.12.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
29 Fiszer A, Krzyzosiak WJ. Oligonucleotide-based strategies to combat polyglutamine diseases. Nucleic Acids Res 2014;42:6787-810. [PMID: 24848018 DOI: 10.1093/nar/gku385] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 4.5] [Reference Citation Analysis]