BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pan B, Lian J, Huang XF, Deng C. Aripiprazole Increases the PKA Signalling and Expression of the GABAA Receptor and CREB1 in the Nucleus Accumbens of Rats. J Mol Neurosci 2016;59:36-47. [PMID: 26894264 DOI: 10.1007/s12031-016-0730-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Li DJ, Yue Q, Liu L, Che KK, Liu XM, Hu CH. Brexpiprazole caused glycolipid metabolic disorder by inhibiting GLP1/GLP1R signaling in rats. Acta Pharmacol Sin 2021;42:1267-79. [PMID: 33976388 DOI: 10.1038/s41401-021-00680-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Lian J, Deng C. Early antipsychotic exposure affects NMDA and GABAA receptor binding in the brains of juvenile rats. Psychiatry Res 2019;273:739-45. [PMID: 31207861 DOI: 10.1016/j.psychres.2019.02.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Pan B, Lian J, Deng C. Chronic antipsychotic treatment differentially modulates protein kinase A- and glycogen synthase kinase 3 beta-dependent signaling pathways, N-methyl-D-aspartate receptor and γ-aminobutyric acid A receptors in nucleus accumbens of juvenile rats. J Psychopharmacol 2018;32:1252-63. [PMID: 30136620 DOI: 10.1177/0269881118788822] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
4 Pan B, Huang XF, Deng C. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats. Sci Rep 2016;6:30040. [PMID: 27435909 DOI: 10.1038/srep30040] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
5 Lum JS, Pan B, Deng C, Huang XF, Ooi L, Newell KA. Effects of short- and long-term aripiprazole treatment on Group I mGluRs in the nucleus accumbens: Comparison with haloperidol. Psychiatry Res 2018;260:152-7. [PMID: 29195167 DOI: 10.1016/j.psychres.2017.11.048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
6 Chen S, Lian J, Su Y, Deng C. Effects of Risperidone and Prenatal Poly I:C Exposure on GABAA Receptors and AKT-GSK3β Pathway in the Ventral Tegmental Area of Female Juvenile Rats. Biomolecules 2022;12:732. [PMID: 35625659 DOI: 10.3390/biom12050732] [Reference Citation Analysis]
7 Jiang M, Sun Y, Lei Y, Hu F, Xia Z, Liu Y, Ma Z, Gu X. GPR30 receptor promotes preoperative anxiety-induced postoperative hyperalgesia by up-regulating GABAA-α4β1δ subunits in periaqueductal gray in female rats. BMC Anesthesiol 2020;20:93. [PMID: 32321426 DOI: 10.1186/s12871-020-01017-7] [Reference Citation Analysis]
8 Tuplin EW, Holahan MR. Aripiprazole, A Drug that Displays Partial Agonism and Functional Selectivity. Curr Neuropharmacol 2017;15:1192-207. [PMID: 28412910 DOI: 10.2174/1570159X15666170413115754] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 5.8] [Reference Citation Analysis]
9 Sowers ML, Re JD, Wadsworth PA, Shavkunov AS, Lichti C, Zhang K, Laezza F. Sex-Specific Proteomic Changes Induced by Genetic Deletion of Fibroblast Growth Factor 14 (FGF14), a Regulator of Neuronal Ion Channels. Proteomes 2019;7:5. [PMID: 30678040 DOI: 10.3390/proteomes7010005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
10 Peris-Yague A, Kiemes A, Cash D, Cotel MC, Singh N, Vernon AC, Modinos G. Region-specific and dose-specific effects of chronic haloperidol exposure on [3H]-flumazenil and [3H]-Ro15-4513 GABAA receptor binding sites in the rat brain. Eur Neuropsychopharmacol 2020;41:106-17. [PMID: 33153853 DOI: 10.1016/j.euroneuro.2020.10.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Khan U, Habibur Rahman M, Salauddin Khan M, Shahadat Hossain M, Morsaline Billah M. Bioinformatics and Network-based Approaches for Determining Pathways, Signature Molecules, and Drug Substances connected to Genetic Basis of Schizophrenia etiology. Brain Res 2022;:147889. [PMID: 35339428 DOI: 10.1016/j.brainres.2022.147889] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Cao X, Li Q, Liu S, Li Z, Wang Y, Cheng L, Yang C, Xu Y. Enhanced Resting-State Functional Connectivity of the Nucleus Accumbens in First-Episode, Medication-Naïve Patients With Early Onset Schizophrenia. Front Neurosci 2022;16:844519. [DOI: 10.3389/fnins.2022.844519] [Reference Citation Analysis]
13 Ohayon S, Yitzhaky A, Hertzberg L. Gene expression meta-analysis reveals the up-regulation of CREB1 and CREBBP in Brodmann Area 10 of patients with schizophrenia. Psychiatry Res 2020;292:113311. [PMID: 32712449 DOI: 10.1016/j.psychres.2020.113311] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
14 Pan B, Deng C. Modulation by chronic antipsychotic administration of PKA- and GSK3β-mediated pathways and the NMDA receptor in rat ventral midbrain. Psychopharmacology (Berl) 2019;236:2687-97. [PMID: 31053935 DOI: 10.1007/s00213-019-05243-x] [Reference Citation Analysis]