BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mihara Y, Dohi K, Yofu S, Nakamachi T, Ohtaki H, Shioda S, Aruga T. Expression and localization of the orexin-1 receptor (OX1R) after traumatic brain injury in mice. J Mol Neurosci 2011;43:162-8. [PMID: 20803175 DOI: 10.1007/s12031-010-9438-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
Number Citing Articles
1 Willie JT, Lim MM, Bennett RE, Azarion AA, Schwetye KE, Brody DL. Controlled cortical impact traumatic brain injury acutely disrupts wakefulness and extracellular orexin dynamics as determined by intracerebral microdialysis in mice. J Neurotrauma 2012;29:1908-21. [PMID: 22607167 DOI: 10.1089/neu.2012.2404] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 4.9] [Reference Citation Analysis]
2 Kapoor K, Bhandare AM, Farnham MM, Pilowsky PM. Alerted microglia and the sympathetic nervous system: A novel form of microglia in the development of hypertension. Respiratory Physiology & Neurobiology 2016;226:51-62. [DOI: 10.1016/j.resp.2015.11.015] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
3 Gosselin N, Baumann CR. Pathophysiology of Sleep-Wake Disturbances After Traumatic Brain Injury. Principles and Practice of Sleep Medicine. Elsevier; 2017. pp. 260-269.e4. [DOI: 10.1016/b978-0-323-24288-2.00025-8] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
4 Cady RJ, Denson JE, Sullivan LQ, Durham PL. Dual orexin receptor antagonist 12 inhibits expression of proteins in neurons and glia implicated in peripheral and central sensitization. Neuroscience 2014;269:79-92. [PMID: 24685439 DOI: 10.1016/j.neuroscience.2014.03.043] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 3.5] [Reference Citation Analysis]
5 Fierros-campuzano J, Ballesteros-zebadúa P, Manjarrez-marmolejo J, Aguilera P, Méndez-diaz M, Prospero-garcía O, Franco-pérez J. Irreversible hippocampal changes induced by high fructose diet in rats. Nutritional Neuroscience. [DOI: 10.1080/1028415x.2020.1853418] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Machaalani R, Hunt NJ, Waters KA. Effects of changes in energy homeostasis and exposure of noxious insults on the expression of orexin (hypocretin) and its receptors in the brain. Brain Res 2013;1526:102-22. [PMID: 23830852 DOI: 10.1016/j.brainres.2013.06.035] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.2] [Reference Citation Analysis]
7 Couvineau A, Voisin T, Nicole P, Gratio V, Abad C, Tan YV. Orexins as Novel Therapeutic Targets in Inflammatory and Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2019;10:709. [PMID: 31695678 DOI: 10.3389/fendo.2019.00709] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
8 Sherman DL, Williams A, Gd S, Modi HR, Wang Q, Thakor NV, Geocadin RG. Intranasal Orexin After Cardiac Arrest Leads to Increased Electroencephalographic Gamma Activity and Enhanced Neurologic Recovery in Rats. Crit Care Explor 2021;3:e0349. [PMID: 33634267 DOI: 10.1097/CCE.0000000000000349] [Reference Citation Analysis]
9 Watanabe J, Shetty AK, Hattiangady B, Kim DK, Foraker JE, Nishida H, Prockop DJ. Administration of TSG-6 improves memory after traumatic brain injury in mice. Neurobiol Dis 2013;59:86-99. [PMID: 23851308 DOI: 10.1016/j.nbd.2013.06.017] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 6.7] [Reference Citation Analysis]
10 Moreno-Ajona D, Villar-Martínez MD, Goadsby PJ. Targets for migraine treatment: beyond calcitonin gene-related peptide. Curr Opin Neurol 2021;34:363-72. [PMID: 33840777 DOI: 10.1097/WCO.0000000000000935] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Feng Z, Zhong YJ, Wang L, Wei TQ. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation. Neural Regen Res 2015;10:594-8. [PMID: 26170820 DOI: 10.4103/1673-5374.155433] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
12 Skopin MD, Kabadi SV, Viechweg SS, Mong JA, Faden AI. Chronic decrease in wakefulness and disruption of sleep-wake behavior after experimental traumatic brain injury. J Neurotrauma 2015;32:289-96. [PMID: 25242371 DOI: 10.1089/neu.2014.3664] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 4.8] [Reference Citation Analysis]
13 Dong XY, Feng Z. Wake-promoting effects of vagus nerve stimulation after traumatic brain injury: upregulation of orexin-A and orexin receptor type 1 expression in the prefrontal cortex. Neural Regen Res 2018;13:244-51. [PMID: 29557373 DOI: 10.4103/1673-5374.226395] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
14 Hooshmandi M, Hosseinmardi N, Janahmadi M, Khakpai F, Rohampour K, Doostmohammadi J. Antagonism of orexin type-1 receptors (OX1Rs) attenuates naloxone-precipitated morphine withdrawal syndrome in rat dorsal hippocampus. Pharmacology Biochemistry and Behavior 2017;158:39-48. [DOI: 10.1016/j.pbb.2017.06.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]