BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sharma S, Meena LS. Potential of Ca2+ in Mycobacterium tuberculosis H37Rv Pathogenesis and Survival. Appl Biochem Biotechnol 2017;181:762-71. [PMID: 27660000 DOI: 10.1007/s12010-016-2247-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
Number Citing Articles
1 Li H, Yuan J, Duan S, Pang Y. Resistance and tolerance of Mycobacterium tuberculosis to antimicrobial agents-How M. tuberculosis can escape antibiotics. WIREs Mech Dis 2022;:e1573. [PMID: 35753313 DOI: 10.1002/wsbm.1573] [Reference Citation Analysis]
2 Maya-Hoyos M, Mata-Espinosa D, López-Torres MO, Tovar-Vázquez B, Barrios-Payán J, León-Contreras JC, Ocampo M, Hernández-Pando R, Soto CY. The ctpF Gene Encoding a Calcium P-Type ATPase of the Plasma Membrane Contributes to Full Virulence of Mycobacterium tuberculosis. Int J Mol Sci 2022;23:6015. [PMID: 35682696 DOI: 10.3390/ijms23116015] [Reference Citation Analysis]
3 Kolesova O, Kramica K, Kolesovs A, Eglite J. Expression of ORAI1 and STIM1 genes in blood of patients with pulmonary tuberculosis. Cent Eur J Immunol 2021;46:275-82. [PMID: 34764799 DOI: 10.5114/ceji.2021.106998] [Reference Citation Analysis]
4 Medha, Sharma S, Sharma M. Proline-Glutamate/Proline-Proline-Glutamate (PE/PPE) proteins of Mycobacterium tuberculosis: The multifaceted immune-modulators. Acta Trop 2021;222:106035. [PMID: 34224720 DOI: 10.1016/j.actatropica.2021.106035] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 de Lima JB, da Silva Fonseca LP, Xavier LP, de Matos Macchi B, Cassoli JS, da Silva EO, da Silva Valadares RB, do Nascimento JLM, Santos AV, de Sena CBC. Culture of Mycobacterium smegmatis in Different Carbon Sources to Induce In Vitro Cholesterol Consumption Leads to Alterations in the Host Cells after Infection: A Macrophage Proteomics Analysis. Pathogens 2021;10:662. [PMID: 34071265 DOI: 10.3390/pathogens10060662] [Reference Citation Analysis]
6 Sun J, Shi Q, Chen X, Liu R. Decoding the similarities and specific differences between latent and active tuberculosis infections based on consistently differential expression networks. Brief Bioinform 2020;21:2084-98. [PMID: 31724702 DOI: 10.1093/bib/bbz127] [Reference Citation Analysis]
7 Yu X, Feng J, Huang L, Gao H, Liu J, Bai S, Wu B, Xie J. Molecular Basis Underlying Host Immunity Subversion by Mycobacterium tuberculosis PE/PPE Family Molecules. DNA Cell Biol 2019;38:1178-87. [PMID: 31580738 DOI: 10.1089/dna.2019.4852] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
8 Meena LS. Interrelation of Ca2+ and PE_PGRS proteins during Mycobacterium tuberculosis pathogenesis. J Biosci 2019;44. [DOI: 10.1007/s12038-018-9828-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
9 Liu F, Chen J, Wang P, Li H, Zhou Y, Liu H, Liu Z, Zheng R, Wang L, Yang H, Cui Z, Wang F, Huang X, Wang J, Sha W, Xiao H, Ge B. MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy. Nat Commun 2018;9:4295. [PMID: 30327467 DOI: 10.1038/s41467-018-06836-4] [Cited by in Crossref: 36] [Cited by in F6Publishing: 49] [Article Influence: 9.0] [Reference Citation Analysis]
10 Nguyen H, Pham T, Nguyen HL, Phan T. Investigation of Binding Affinity Between Prokaryotic Proteins (AHU-IHF) and DNAs: Steered Molecular Dynamics Approach. Appl Biochem Biotechnol 2018;186:834-46. [DOI: 10.1007/s12010-018-2735-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
11 Shivangi, Meena LS. A Novel Approach in Treatment of Tuberculosis by Targeting Drugs to Infected Macrophages Using Biodegradable Nanoparticles. Appl Biochem Biotechnol 2018;185:815-21. [DOI: 10.1007/s12010-018-2695-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]