BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wilkins HM, Koppel SJ, Weidling IW, Roy N, Ryan LN, Stanford JA, Swerdlow RH. Extracellular Mitochondria and Mitochondrial Components Act as Damage-Associated Molecular Pattern Molecules in the Mouse Brain. J Neuroimmune Pharmacol 2016;11:622-8. [PMID: 27562848 DOI: 10.1007/s11481-016-9704-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
Number Citing Articles
1 Caicedo A, Zambrano K, Sanon S, Gavilanes AWD. Extracellular mitochondria in the cerebrospinal fluid (CSF): Potential types and key roles in central nervous system (CNS) physiology and pathogenesis. Mitochondrion 2021;58:255-69. [PMID: 33662579 DOI: 10.1016/j.mito.2021.02.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Esteves AR, Silva DF, Santos D, Candeias E, Filipe F, Cardoso SM. Mitochondria at the Base of Neuronal Innate Immunity in Alzheimer’s and Parkinson’s Diseases. In: Taskin E, Guven C, Sevgiler Y, editors. Mitochondrial Diseases. InTech; 2018. [DOI: 10.5772/intechopen.72612] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
3 Yoo SM, Park J, Kim SH, Jung YK. Emerging perspectives on mitochondrial dysfunction and inflammation in Alzheimer's disease. BMB Rep 2020;53:35-46. [PMID: 31818363 [PMID: 31818363 DOI: 10.5483/bmbrep.2020.53.1.274] [Cited by in Crossref: 14] [Article Influence: 7.0] [Reference Citation Analysis]
4 Thangaraj A, Periyasamy P, Liao K, Bendi VS, Callen S, Pendyala G, Buch S. HIV-1 TAT-mediated microglial activation: role of mitochondrial dysfunction and defective mitophagy. Autophagy 2018;14:1596-619. [PMID: 29966509 DOI: 10.1080/15548627.2018.1476810] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 10.3] [Reference Citation Analysis]
5 Xia X, Chen W, McDermott J, Han JJ. Molecular and phenotypic biomarkers of aging. F1000Res 2017;6:860. [PMID: 28663789 DOI: 10.12688/f1000research.10692.1] [Cited by in Crossref: 71] [Cited by in F6Publishing: 50] [Article Influence: 14.2] [Reference Citation Analysis]
6 Rodríguez-Nuevo A, Zorzano A. The sensing of mitochondrial DAMPs by non-immune cells. Cell Stress 2019;3:195-207. [PMID: 31225514 DOI: 10.15698/cst2019.06.190] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
7 Litwiniuk A, Baranowska-Bik A, Domańska A, Kalisz M, Bik W. Contribution of Mitochondrial Dysfunction Combined with NLRP3 Inflammasome Activation in Selected Neurodegenerative Diseases. Pharmaceuticals (Basel) 2021;14:1221. [PMID: 34959622 DOI: 10.3390/ph14121221] [Reference Citation Analysis]
8 Dernie F. Mitophagy in Parkinson's disease: From pathogenesis to treatment target. Neurochem Int 2020;138:104756. [PMID: 32428526 DOI: 10.1016/j.neuint.2020.104756] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
9 Spencer DM, Dye JR, Piantadosi CA, Pisetsky DS. The release of microparticles and mitochondria from RAW 264.7 murine macrophage cells undergoing necroptotic cell death in vitro. Exp Cell Res 2018;363:151-9. [PMID: 29291399 DOI: 10.1016/j.yexcr.2017.12.024] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
10 Austad SN, Ballinger S, Buford TW, Carter CS, Smith DL, Darley-usmar V, Zhang J. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer's disease. Acta Pharmaceutica Sinica B 2021. [DOI: 10.1016/j.apsb.2021.06.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Schindler SM, Frank MG, Annis JL, Maier SF, Klegeris A. Pattern recognition receptors mediate pro-inflammatory effects of extracellular mitochondrial transcription factor A (TFAM). Molecular and Cellular Neuroscience 2018;89:71-9. [DOI: 10.1016/j.mcn.2018.04.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
12 Mobarrez F, Fuzzi E, Gunnarsson I, Larsson A, Eketjäll S, Pisetsky DS, Svenungsson E. Microparticles in the blood of patients with SLE: Size, content of mitochondria and role in circulating immune complexes. J Autoimmun 2019;102:142-9. [PMID: 31103269 DOI: 10.1016/j.jaut.2019.05.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
13 Lowes H, Kurzawa-Akanbi M, Pyle A, Hudson G. Post-mortem ventricular cerebrospinal fluid cell-free-mtDNA in neurodegenerative disease. Sci Rep 2020;10:15253. [PMID: 32943697 DOI: 10.1038/s41598-020-72190-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Lowes H, Pyle A, Santibanez-Koref M, Hudson G. Circulating cell-free mitochondrial DNA levels in Parkinson's disease are influenced by treatment. Mol Neurodegener 2020;15:10. [PMID: 32070373 DOI: 10.1186/s13024-020-00362-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
15 Wilkins HM, Weidling IW, Ji Y, Swerdlow RH. Mitochondria-Derived Damage-Associated Molecular Patterns in Neurodegeneration. Front Immunol 2017;8:508. [PMID: 28491064 DOI: 10.3389/fimmu.2017.00508] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 9.0] [Reference Citation Analysis]
16 Cardoso SM, Empadinhas N. The Microbiome-Mitochondria Dance in Prodromal Parkinson's Disease. Front Physiol 2018;9:471. [PMID: 29867531 DOI: 10.3389/fphys.2018.00471] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
17 Gauba E, Sui S, Tian J, Driskill C, Jia K, Yu C, Rughwani T, Wang Q, Kroener S, Guo L, Du H. Modulation of OSCP mitigates mitochondrial and synaptic deficits in a mouse model of Alzheimer's pathology. Neurobiol Aging 2021;98:63-77. [PMID: 33254080 DOI: 10.1016/j.neurobiolaging.2020.09.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Chamera K, Trojan E, Szuster-Głuszczak M, Basta-Kaim A. The Potential Role of Dysfunctions in Neuron-Microglia Communication in the Pathogenesis of Brain Disorders. Curr Neuropharmacol 2020;18:408-30. [PMID: 31729301 DOI: 10.2174/1570159X17666191113101629] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]