BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Masarone M, Troisi J, Aglitti A, Torre P, Colucci A, Dallio M, Federico A, Balsano C, Persico M. Untargeted metabolomics as a diagnostic tool in NAFLD: discrimination of steatosis, steatohepatitis and cirrhosis. Metabolomics 2021;17:12. [PMID: 33458794 DOI: 10.1007/s11306-020-01756-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 16.0] [Reference Citation Analysis]
Number Citing Articles
1 Cozzolino R, De Giulio B, Martignetti A, Forte G, Dallio M, Romeo M, Scognamiglio F, Ventriglia L, Stocchero M, Federico A. Urinary volatile Organic compounds in non-alcoholic fatty liver disease (NAFLD), type two diabetes mellitus (T2DM) and NAFLD-T2DM coexistence. Metabolomics 2022;18:98. [DOI: 10.1007/s11306-022-01960-1] [Reference Citation Analysis]
2 Ramos-lopez O. Multi-Omics Nutritional Approaches Targeting Metabolic-Associated Fatty Liver Disease. Genes 2022;13:2142. [DOI: 10.3390/genes13112142] [Reference Citation Analysis]
3 Baciu C, Xu C, Alim M, Prayitno K, Bhat M. Artificial intelligence applied to omics data in liver diseases: Enhancing clinical predictions. Front Artif Intell 2022;5. [DOI: 10.3389/frai.2022.1050439] [Reference Citation Analysis]
4 Shao M, Lu Y, Xiang H, Wang J, Ji G, Wu T. Application of metabolomics in the diagnosis of non-alcoholic fatty liver disease and the treatment of traditional Chinese medicine. Front Pharmacol 2022;13:971561. [DOI: 10.3389/fphar.2022.971561] [Reference Citation Analysis]
5 Zolnikova OY, Reshetova MS, Ivanova MN, Ivashkin VT. Metabolomic profiles as a new understanding of disease processes. Rossijskij žurnal gastroènterologii, gepatologii, koloproktologii 2022;32:46-52. [DOI: 10.22416/1382-4376-2022-32-1-46-52] [Reference Citation Analysis]
6 Saffo S, Do A. Clinical Phenotyping and the Application of Precision Medicine in MAFLD. Clinical Liver Disease. [DOI: 10.1002/cld.1199] [Reference Citation Analysis]
7 Haam J, Lee YK, Suh E, Kim Y. Characteristics of Urine Organic Acid Metabolites in Nonalcoholic Fatty Liver Disease Assessed Using Magnetic Resonance Imaging with Elastography in Korean Adults. Diagnostics 2022;12:1199. [DOI: 10.3390/diagnostics12051199] [Reference Citation Analysis]
8 Imbery CA, Dieterle F, Ottka C, Weber C, Schlotterbeck G, Müller E, Lohi H, Giger U. Metabolomic serum abnormalities in dogs with hepatopathies. Sci Rep 2022;12:5329. [PMID: 35351920 DOI: 10.1038/s41598-022-09056-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Gupta H, Min B, Ganesan R, Gebru YA, Sharma SP, Park E, Won S, Jeong J, Lee S, Cha M, Kwon G, Jeong M, Hyun J, Eom J, Park H, Yoon S, Choi M, Kim D, Suk K. Gut Microbiome in Non-Alcoholic Fatty Liver Disease: From Mechanisms to Therapeutic Role. Biomedicines 2022;10:550. [DOI: 10.3390/biomedicines10030550] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
10 Martinou E, Pericleous M, Stefanova I, Kaur V, Angelidi AM. Diagnostic Modalities of Non-Alcoholic Fatty Liver Disease: From Biochemical Biomarkers to Multi-Omics Non-Invasive Approaches. Diagnostics (Basel) 2022;12:407. [PMID: 35204498 DOI: 10.3390/diagnostics12020407] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
11 Troisi J, Troisi G, Scala G, Richards SM. Data analysis in metabolomics: from information to knowledge. Metabolomics Perspectives 2022. [DOI: 10.1016/b978-0-323-85062-9.00009-x] [Reference Citation Analysis]
12 Vallianou N, Christodoulatos GS, Karampela I, Tsilingiris D, Magkos F, Stratigou T, Kounatidis D, Dalamaga M. Understanding the Role of the Gut Microbiome and Microbial Metabolites in Non-Alcoholic Fatty Liver Disease: Current Evidence and Perspectives. Biomolecules 2022;12:56. [DOI: 10.3390/biom12010056] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 14.0] [Reference Citation Analysis]
13 Dorairaj V, Sulaiman SA, Abu N, Abdul Murad NA. Nonalcoholic Fatty Liver Disease (NAFLD): Pathogenesis and Noninvasive Diagnosis. Biomedicines 2021;10:15. [PMID: 35052690 DOI: 10.3390/biomedicines10010015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Passaro AP, Marzuillo P, Guarino S, Scaglione F, Miraglia del Giudice E, Di Sessa A. Omics era in type 2 diabetes: From childhood to adulthood. World J Diabetes 2021; 12(12): 2027-2035 [DOI: 10.4239/wjd.v12.i12.2027] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Pinilla L, Benítez ID, Santamaria-Martos F, Targa A, Moncusí-Moix A, Dalmases M, Mínguez O, Aguilà M, Jové M, Sol J, Pamplona R, Barbé F, Sánchez-de-la-Torre M. Plasma profiling reveals a blood-based metabolic fingerprint of obstructive sleep apnea. Biomed Pharmacother 2022;145:112425. [PMID: 34800782 DOI: 10.1016/j.biopha.2021.112425] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Piras C, Noto A, Ibba L, Deidda M, Fanos V, Muntoni S, Leoni VP, Atzori L. Contribution of Metabolomics to the Understanding of NAFLD and NASH Syndromes: A Systematic Review. Metabolites 2021;11:694. [PMID: 34677409 DOI: 10.3390/metabo11100694] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
17 Hliwa A, Ramos-Molina B, Laski D, Mika A, Sledzinski T. The Role of Fatty Acids in Non-Alcoholic Fatty Liver Disease Progression: An Update. Int J Mol Sci 2021;22:6900. [PMID: 34199035 DOI: 10.3390/ijms22136900] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
18 Hoozemans J, de Brauw M, Nieuwdorp M, Gerdes V. Gut Microbiome and Metabolites in Patients with NAFLD and after Bariatric Surgery: A Comprehensive Review. Metabolites 2021;11:353. [PMID: 34072995 DOI: 10.3390/metabo11060353] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]