BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pang L, Pei Y, Uzunalli G, Hyun H, Lyle LT, Yeo Y. Surface Modification of Polymeric Nanoparticles with M2pep Peptide for Drug Delivery to Tumor-Associated Macrophages. Pharm Res 2019;36:65. [PMID: 30859335 DOI: 10.1007/s11095-019-2596-5] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Chen J, Cong X. Surface-engineered nanoparticles in cancer immune response and immunotherapy: Current status and future prospects. Biomed Pharmacother 2023;157:113998. [PMID: 36399829 DOI: 10.1016/j.biopha.2022.113998] [Reference Citation Analysis]
2 Huang M, Wang R, Li M, Cai H, Tian R. Peptide-Based [(68)Ga]Ga Labeled PET Tracer for Tumor Imaging by Targeting Tumor-Associated Macrophages. Pharmaceutics 2022;14. [PMID: 36432702 DOI: 10.3390/pharmaceutics14112511] [Reference Citation Analysis]
3 Xu S, Zhang X, Zhu X, Su H, Yan X. A combined arsenic trioxide/tetrandrine nanoparticle formulation with improved inhibitory effect against promyelocytic leukemia. Journal of Drug Delivery Science and Technology 2022;74:103572. [DOI: 10.1016/j.jddst.2022.103572] [Reference Citation Analysis]
4 Adeyemi SA, Choonara YE. In Vitro and In Vivo Evaluation of a Cyclic LyP-1-Modified Nanosystem for Targeted Endostatin Delivery in a KYSE-30 Cell Xenograft Athymic Nude Mice Model. Pharmaceuticals 2022;15:353. [DOI: 10.3390/ph15030353] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Vaynrub A, Healey JH, Tap W, Vaynrub M. Pexidartinib in the Management of Advanced Tenosynovial Giant Cell Tumor: Focus on Patient Selection and Special Considerations. Onco Targets Ther 2022;15:53-66. [PMID: 35046667 DOI: 10.2147/OTT.S345878] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Hourani T, Holden JA, Li W, Lenzo JC, Hadjigol S, O'Brien-Simpson NM. Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting. Front Oncol 2021;11:788365. [PMID: 34988021 DOI: 10.3389/fonc.2021.788365] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 14.0] [Reference Citation Analysis]
7 Teli A, Gaikwad P, Chakave S, Kane A, Dey T. Nanomedicines for Tumor-Associated Macrophages. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-5422-0_265] [Reference Citation Analysis]
8 Darwish LR, Abdalla M, Ibrahim H, Farag MM, Mehanny S. Advances in the Development of Biodegradable Polymeric Materials for Indispensable Applications in the Biomedical Field. Encyclopedia of Materials: Plastics and Polymers 2022. [DOI: 10.1016/b978-0-12-820352-1.00225-x] [Reference Citation Analysis]
9 Teli A, Gaikwad P, Chakave S, Kane A, Dey T. Nanomedicines for Tumor-Associated Macrophages. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-1247-3_265-1] [Reference Citation Analysis]
10 Fraguas-sánchez AI, Martín-sabroso C, Torres-suárez AI. Nanomedicine as a Novel Strategy to Target Tumor Immune Microenvironment: Current State and Future Perspectives. Handbook of Cancer and Immunology 2022. [DOI: 10.1007/978-3-030-80962-1_118-1] [Reference Citation Analysis]
11 Ramesh A, Kulkarni AA. Delivery strategies for reprogramming tumor-associated macrophages. Systemic Drug Delivery Strategies 2022. [DOI: 10.1016/b978-0-323-85781-9.00004-x] [Reference Citation Analysis]
12 He Y, de Araújo Júnior RF, Cruz LJ, Eich C. Functionalized Nanoparticles Targeting Tumor-Associated Macrophages as Cancer Therapy. Pharmaceutics 2021;13:1670. [PMID: 34683963 DOI: 10.3390/pharmaceutics13101670] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
13 Qi X, Yan H, Li Y. ATRP-based synthesis of a pH-sensitive amphiphilic block polymer and its self-assembled micelles with hollow mesoporous silica as DOX carriers for controlled drug release. RSC Adv 2021;11:29986-96. [PMID: 35480284 DOI: 10.1039/d1ra03899k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Medrano-Bosch M, Moreno-Lanceta A, Melgar-Lesmes P. Nanoparticles to Target and Treat Macrophages: The Ockham's Concept? Pharmaceutics 2021;13:1340. [PMID: 34575416 DOI: 10.3390/pharmaceutics13091340] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
15 Shi Q, Wu K, Huang X, Xu R, Zhang W, Bai J, Du S, Han N. Tannic acid/Fe3+ complex coated mesoporous silica nanoparticles for controlled drug release and combined chemo-photothermal therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;618:126475. [DOI: 10.1016/j.colsurfa.2021.126475] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
16 Liang DS, Wen ZJ, Wang JH, Zhu FF, Guo F, Zhou JL, Xu JJ, Zhong HJ. Legumain protease-sheddable PEGylated, tuftsin-modified nanoparticles for selective targeting to tumor-associated macrophages. J Drug Target 2021;:1-25. [PMID: 33775195 DOI: 10.1080/1061186X.2021.1906886] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
17 Delfi M, Sartorius R, Ashrafizadeh M, Sharifi E, Zhang Y, De Berardinis P, Zarrabi A, Varma RS, Tay FR, Smith BR, Makvandi P. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today 2021;38:101119. [PMID: 34267794 DOI: 10.1016/j.nantod.2021.101119] [Cited by in Crossref: 64] [Cited by in F6Publishing: 71] [Article Influence: 32.0] [Reference Citation Analysis]
18 Bhattacharya D, Sakhare K, Narayan KP, Banerjee R. The prospects of nanotherapeutic approaches for targeting tumor-associated macrophages in oral cancer. Nanomedicine 2021;34:102371. [PMID: 33662592 DOI: 10.1016/j.nano.2021.102371] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Hersh J, Broyles D, Capcha JMC, Dikici E, Shehadeh LA, Daunert S, Deo S. Peptide-Modified Biopolymers for Biomedical Applications. ACS Appl Bio Mater 2021;4:229-51. [PMID: 34250454 DOI: 10.1021/acsabm.0c01145] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
20 Guo N, Zhou Y, Wang T, Lin M, Chen J, Zhang Z, Zhong X, Lu Y, Yang Q, Xu D, Gao J, Han M. Specifically Eliminating Tumor-Associated Macrophages with an Extra- and Intracellular Stepwise-Responsive Nanocarrier for Inhibiting Metastasis. ACS Appl Mater Interfaces 2020;12:57798-809. [PMID: 33325679 DOI: 10.1021/acsami.0c19301] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
21 Furukawa N, Popel AS. Peptides that immunoactivate the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2021;1875:188486. [PMID: 33276025 DOI: 10.1016/j.bbcan.2020.188486] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
22 Li J, Burgess DJ. Nanomedicine-based drug delivery towards tumor biological and immunological microenvironment. Acta Pharm Sin B 2020;10:2110-24. [PMID: 33304781 DOI: 10.1016/j.apsb.2020.05.008] [Cited by in Crossref: 53] [Cited by in F6Publishing: 59] [Article Influence: 17.7] [Reference Citation Analysis]
23 Ma C, Wu M, Ye W, Huang Z, Ma X, Wang W, Wang W, Huang Y, Pan X, Wu C. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: macrophage-targeting and pH-sensitive properties. Drug Deliv Transl Res 2021;11:1218-35. [PMID: 32946043 DOI: 10.1007/s13346-020-00849-7] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 7.3] [Reference Citation Analysis]
24 Sun B, Hyun H, Li LT, Wang AZ. Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment. Acta Pharmacol Sin 2020;41:970-85. [PMID: 32424240 DOI: 10.1038/s41401-020-0424-4] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
25 Ye J, Yang Y, Jin J, Ji M, Gao Y, Feng Y, Wang H, Chen X, Liu Y. Targeted delivery of chlorogenic acid by mannosylated liposomes to effectively promote the polarization of TAMs for the treatment of glioblastoma. Bioact Mater 2020;5:694-708. [PMID: 32478203 DOI: 10.1016/j.bioactmat.2020.05.001] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
26 Soni G, Kale K, Shetty S, Gupta MK, Yadav KS. Quality by design (QbD) approach in processing polymeric nanoparticles loading anticancer drugs by high pressure homogenizer. Heliyon 2020;6:e03846. [PMID: 32373744 DOI: 10.1016/j.heliyon.2020.e03846] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
27 Trac NT, Chung EJ. Peptide-based targeting of immunosuppressive cells in cancer. Bioact Mater 2020;5:92-101. [PMID: 31956738 DOI: 10.1016/j.bioactmat.2020.01.006] [Cited by in Crossref: 24] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
28 Yuan Y. Mechanisms Inspired Targeting Peptides. Adv Exp Med Biol 2020;1248:531-46. [PMID: 32185724 DOI: 10.1007/978-981-15-3266-5_21] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
29 Guevara ML, Persano F, Persano S. Nano-immunotherapy: Overcoming tumour immune evasion. Semin Cancer Biol 2021;69:238-48. [PMID: 31883449 DOI: 10.1016/j.semcancer.2019.11.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
30 Rajabi M, Godugu K, Sudha T, Bharali DJ, Mousa SA. Triazole Modified Tetraiodothyroacetic Acid Conjugated to Polyethylene Glycol: High Affinity Thyrointegrin α(v)β(3) Antagonist with Potent Anticancer Activities in Glioblastoma Multiforme. Bioconjug Chem 2019;30:3087-97. [PMID: 31714064 DOI: 10.1021/acs.bioconjchem.9b00742] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
31 Hujaya SD, Manninen A, Kling K, Wagner JB, Vainio SJ, Liimatainen H. Self-assembled nanofibrils from RGD-functionalized cellulose nanocrystals to improve the performance of PEI/DNA polyplexes. Journal of Colloid and Interface Science 2019;553:71-82. [DOI: 10.1016/j.jcis.2019.06.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
32 Raju GSR, Dariya B, Mungamuri SK, Chalikonda G, Kang SM, Khan IN, Sushma PS, Nagaraju GP, Pavitra E, Han YK. Nanomaterials multifunctional behavior for enlightened cancer therapeutics. Semin Cancer Biol 2021;69:178-89. [PMID: 31419527 DOI: 10.1016/j.semcancer.2019.08.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
33 Wang J, Meng F, Kim BK, Ke X, Yeo Y. In-vitro and in-vivo difference in gene delivery by lithocholic acid-polyethyleneimine conjugate. Biomaterials 2019;217:119296. [PMID: 31254934 DOI: 10.1016/j.biomaterials.2019.119296] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]