1 |
Guo C, Zhou X, Wang X, Wang H, Liu J, Wang J, Lin X, Lei S, Yang Y, Liu K, Long H, Zhou D. Annao Pingchong decoction alleviate the neurological impairment by attenuating neuroinflammation and apoptosis in intracerebral hemorrhage rats. J Ethnopharmacol 2023;310:116298. [PMID: 36870460 DOI: 10.1016/j.jep.2023.116298] [Reference Citation Analysis]
|
2 |
Lan T, Sun TT, Wei C, Cheng T, Yang F, Zhang JN, Li Q. Epigenetic Regulation of Ferroptosis in Central Nervous System Diseases. Mol Neurobiol 2023. [PMID: 36847936 DOI: 10.1007/s12035-023-03267-1] [Reference Citation Analysis]
|
3 |
Yi TT, Zhang LM, Huang XN. Glycyrrhizic acid protects against temporal lobe epilepsy in young rats by regulating neuronal ferroptosis through the miR-194-5p/PTGS2 axis. Kaohsiung J Med Sci 2023;39:154-65. [PMID: 36647717 DOI: 10.1002/kjm2.12642] [Reference Citation Analysis]
|
4 |
Mahmoudi-Lamouki R, Kadkhoda S, Hussen BM, Ghafouri-Fard S. Emerging role of miRNAs in the regulation of ferroptosis. Front Mol Biosci 2023;10:1115996. [PMID: 36876051 DOI: 10.3389/fmolb.2023.1115996] [Reference Citation Analysis]
|
5 |
Xu Y, Li K, Zhao Y, Zhou L, Liu Y, Zhao J. Role of Ferroptosis in Stroke. Cell Mol Neurobiol 2023;43:205-22. [PMID: 35102454 DOI: 10.1007/s10571-022-01196-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
6 |
Wang Y, Chen B, Fan J, Wang Z. A simple and efficient strategy for trace detection of ferroptosis-related miRNAs based on novel hydrophobic paper-based plasmonic substrate and "inverse molecular sentinel (iMS)" nanoprobes. Front Bioeng Biotechnol 2023;11:1146111. [PMID: 36937763 DOI: 10.3389/fbioe.2023.1146111] [Reference Citation Analysis]
|
7 |
Sun Y, Li Q, Guo H, He Q. Ferroptosis and Iron Metabolism after Intracerebral Hemorrhage. Cells 2022;12. [PMID: 36611883 DOI: 10.3390/cells12010090] [Reference Citation Analysis]
|
8 |
Lou Y, Ma M, Jiang Y, Xu H, Gao Z, Gao L, Wang Y. Ferroptosis: A new strategy for traditional Chinese medicine treatment of stroke. Biomedicine & Pharmacotherapy 2022;156:113806. [DOI: 10.1016/j.biopha.2022.113806] [Reference Citation Analysis]
|
9 |
Wang L, Ren W, Wang L, Mao L, Mazhar M, Zhou C, Xu H, Yang S. Exploring the Ferroptosis Mechanism of Zhilong Huoxue Tongyu Capsule for the Treatment of Intracerebral Hemorrhage Based on Network Pharmacology and In Vivo Validation. Evidence-Based Complementary and Alternative Medicine 2022;2022:1-13. [DOI: 10.1155/2022/5033135] [Reference Citation Analysis]
|
10 |
Zheng Y, Li R, Fan X. Targeting Oxidative Stress in Intracerebral Hemorrhage: Prospects of the Natural Products Approach. Antioxidants 2022;11:1811. [DOI: 10.3390/antiox11091811] [Reference Citation Analysis]
|
11 |
Ren S, Chen Y, Wang L, Wu G. Neuronal ferroptosis after intracerebral hemorrhage. Front Mol Biosci 2022;9:966478. [DOI: 10.3389/fmolb.2022.966478] [Reference Citation Analysis]
|
12 |
Zhao X, Qiao D, Guan D, Wang K, Cui Y, Wilson C. Chrysophanol Ameliorates Hemin-Induced Oxidative Stress and Endoplasmic Reticulum Stress by Regulating MicroRNA-320-5p/Wnt3a Pathway in HT22 Cells. Oxidative Medicine and Cellular Longevity 2022;2022:1-19. [DOI: 10.1155/2022/9399658] [Reference Citation Analysis]
|
13 |
Fuhrmann DC, Brüne B. A graphical journey through iron metabolism, microRNAs, and hypoxia in ferroptosis. Redox Biol 2022;54:102365. [PMID: 35717888 DOI: 10.1016/j.redox.2022.102365] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
14 |
Ou M, Jiang Y, Ji Y, Zhou Q, Du Z, Zhu H, Zhou Z. Role and Mechanism of Ferroptosis in Neurological Diseases. Mol Metab 2022;:101502. [PMID: 35447365 DOI: 10.1016/j.molmet.2022.101502] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
15 |
Zhou Y, Lin W, Rao T, Zheng J, Zhang T, Zhang M, Lin Z. Ferroptosis and Its Potential Role in the Nervous System Diseases. JIR 2022;Volume 15:1555-74. [DOI: 10.2147/jir.s351799] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
|
16 |
Liu Y, Gu W. p53 in ferroptosis regulation: the new weapon for the old guardian. Cell Death Differ 2022. [PMID: 35087226 DOI: 10.1038/s41418-022-00943-y] [Cited by in Crossref: 79] [Cited by in F6Publishing: 76] [Article Influence: 79.0] [Reference Citation Analysis]
|
17 |
Xia J, Song X, Meng J, Lou D. Endothelial progenitor cells-derived exosomes transfer microRNA-30e-5p to regulate Erastin-induced ferroptosis in human umbilical vein endothelial cells via the specificity protein 1/adenosine monophosphate-activated protein kinase axis. Bioengineered 2022;13:3566-80. [DOI: 10.1080/21655979.2022.2025519] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
18 |
Cave MC, Pinkston CM, Rai SN, Wahlang B, Pavuk M, Head KZ, Carswell GK, Nelson GM, Klinge CM, Bell DA, Birnbaum LS, Chorley BN. Circulating MicroRNAs, Polychlorinated Biphenyls, and Environmental Liver Disease in the Anniston Community Health Survey. Environ Health Perspect 2022;130:17003. [PMID: 34989596 DOI: 10.1289/EHP9467] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
19 |
Chen H, Wang Y. Ferroptosis in diabetic nephropathy: A narrative review. Integr Med Nephrol Androl 2022;9:1. [DOI: 10.4103/imna.imna_2_22] [Reference Citation Analysis]
|