BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Maher P, Kontoghiorghes GJ. Characterization of the Neuroprotective Potential of Derivatives of the Iron Chelating Drug Deferiprone. Neurochem Res 2015;40:609-20. [DOI: 10.1007/s11064-014-1508-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
Number Citing Articles
1 Kontoghiorghes GJ, Kontoghiorghe CN. Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases. Cells 2020;9:E1456. [PMID: 32545424 DOI: 10.3390/cells9061456] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
2 Timoshnikov VA, Kobzeva T, Selyutina OY, Polyakov NE, Kontoghiorghes GJ. Effective inhibition of copper-catalyzed production of hydroxyl radicals by deferiprone. J Biol Inorg Chem 2019;24:331-41. [DOI: 10.1007/s00775-019-01650-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
3 Lewis FW, Bird K, Navarro JP, El Fallah R, Brandel J, Hubscher-Bruder V, Tsatsanis A, Duce JA, Tétard D, Bourne S, Maina M, Pienaar IS. Synthesis, physicochemical characterization and neuroprotective evaluation of novel 1-hydroxypyrazin-2(1H)-one iron chelators in an in vitro cell model of Parkinson's disease. Dalton Trans 2022. [PMID: 35147617 DOI: 10.1039/d1dt02604f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Kontoghiorghes GJ, Kontoghiorghe CN. Prospects for the introduction of targeted antioxidant drugs for the prevention and treatment of diseases related to free radical pathology. Expert Opinion on Investigational Drugs 2019;28:593-603. [DOI: 10.1080/13543784.2019.1631284] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
5 Kontoghiorghes GJ. Advances on Chelation and Chelator Metal Complexes in Medicine. Int J Mol Sci 2020;21:E2499. [PMID: 32260293 DOI: 10.3390/ijms21072499] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
6 Timoshnikov VA, Kichigina LA, Selyutina OY, Polyakov NE, Kontoghiorghes GJ. Antioxidant Activity of Deferasirox and Its Metal Complexes in Model Systems of Oxidative Damage: Comparison with Deferiprone. Molecules 2021;26:5064. [PMID: 34443652 DOI: 10.3390/molecules26165064] [Reference Citation Analysis]
7 Kontoghiorghes GJ. Deferiprone: A Forty-Year-Old Multi-Targeting Drug with Possible Activity against COVID-19 and Diseases of Similar Symptomatology. Int J Mol Sci 2022;23:6735. [PMID: 35743183 DOI: 10.3390/ijms23126735] [Reference Citation Analysis]
8 Maher P, van Leyen K, Dey PN, Honrath B, Dolga A, Methner A. The role of Ca2+ in cell death caused by oxidative glutamate toxicity and ferroptosis. Cell Calcium 2018;70:47-55. [PMID: 28545724 DOI: 10.1016/j.ceca.2017.05.007] [Cited by in Crossref: 59] [Cited by in F6Publishing: 57] [Article Influence: 11.8] [Reference Citation Analysis]
9 Gromadzka G, Tarnacka B, Flaga A, Adamczyk A. Copper Dyshomeostasis in Neurodegenerative Diseases-Therapeutic Implications. Int J Mol Sci 2020;21:E9259. [PMID: 33291628 DOI: 10.3390/ijms21239259] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
10 Kontoghiorghes GJ, Kleanthous M, Kontoghiorghe CN. The History of Deferiprone (L1) and the Paradigm of the Complete Treatment of Iron Overload in Thalassaemia. Mediterr J Hematol Infect Dis 2020;12:e2020011. [PMID: 31934321 DOI: 10.4084/MJHID.2020.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
11 Schramm S, Huang G, Gunesch S, Lang F, Roa J, Högger P, Sabaté R, Maher P, Decker M. Regioselective synthesis of 7-O-esters of the flavonolignan silibinin and SARs lead to compounds with overadditive neuroprotective effects. Eur J Med Chem 2018;146:93-107. [PMID: 29407994 DOI: 10.1016/j.ejmech.2018.01.036] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
12 Maher P. Potentiation of glutathione loss and nerve cell death by the transition metals iron and copper: Implications for age-related neurodegenerative diseases. Free Radic Biol Med 2018;115:92-104. [PMID: 29170091 DOI: 10.1016/j.freeradbiomed.2017.11.015] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 7.2] [Reference Citation Analysis]
13 Wang X, Ji G, Shi C, Diwu J, Chen L, Gui D, Wan J, Silver MA, Wang J, Wang S. Structural and thermodynamic stability of uranyl-deferiprone complexes and the removal efficacy of U(vi) at the cellular level. Dalton Trans 2018;47:8764-70. [PMID: 29916520 DOI: 10.1039/c8dt01738g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
14 Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2019;119:1221-322. [DOI: 10.1021/acs.chemrev.8b00138] [Cited by in Crossref: 178] [Cited by in F6Publishing: 141] [Article Influence: 44.5] [Reference Citation Analysis]
15 Baldari S, Di Rocco G, Toietta G. Current Biomedical Use of Copper Chelation Therapy. Int J Mol Sci 2020;21:E1069. [PMID: 32041110 DOI: 10.3390/ijms21031069] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 16.5] [Reference Citation Analysis]
16 Oyewole AO, Birch-Machin MA. Mitochondria-targeted antioxidants. FASEB J 2015;29:4766-71. [PMID: 26253366 DOI: 10.1096/fj.15-275404] [Cited by in Crossref: 181] [Cited by in F6Publishing: 169] [Article Influence: 25.9] [Reference Citation Analysis]