BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Barabadi H, Vahidi H, Damavandi Kamali K, Rashedi M, Hosseini O, Golnaraghi Ghomi AR, Saravanan M. Emerging Theranostic Silver Nanomaterials to Combat Colorectal Cancer: A Systematic Review. J Clust Sci 2020;31:311-21. [DOI: 10.1007/s10876-019-01668-8] [Cited by in Crossref: 43] [Cited by in F6Publishing: 30] [Article Influence: 10.8] [Reference Citation Analysis]
Number Citing Articles
1 Wang W, Yuan L, Zhou J, Zhu X, Liao Z, Yin L, Li W, Jiang HS. Inorganic carbon utilization: A target of silver nanoparticle toxicity on a submerged macrophyte. Environ Pollut 2023;318:120906. [PMID: 36549447 DOI: 10.1016/j.envpol.2022.120906] [Reference Citation Analysis]
2 Mondéjar-López M, López-Jimenez AJ, Ahrazem O, Gómez-Gómez L, Niza E. Chitosan coated - biogenic silver nanoparticles from wheat residues as green antifungal and nanoprimig in wheat seeds. Int J Biol Macromol 2023;225:964-73. [PMID: 36402386 DOI: 10.1016/j.ijbiomac.2022.11.159] [Reference Citation Analysis]
3 Ravi B, Mani G, Pushparaj H, Jang HT, Manickam V. Sida cordata assisted bio-inspired silver nanoparticles and its antimicrobial, free-radical scavenging, tyrosinase inhibition, and photocatalytic activity (4 in 1 system). Particulate Science and Technology. [DOI: 10.1080/02726351.2022.2129116] [Reference Citation Analysis]
4 Abdellatif AAH, Abdelfattah A, Bouazzaoui A, Osman SK, Al-moraya IS, Showail AMS, Alsharidah M, Aboelela A, Al Rugaie O, Faris TM, Tawfeek HM, Aruni W. Silver Nanoparticles Stabilized by Poly (Vinyl Pyrrolidone) with Potential Anticancer Activity towards Prostate Cancer. Bioinorganic Chemistry and Applications 2022;2022:1-12. [DOI: 10.1155/2022/6181448] [Reference Citation Analysis]
5 Golnaraghi-ghomi AR, Mohammadi-khanaposhti M, Sokhansanj A, Saadati Y, Khazraei E, Kobarfard F, Barabadi H, Golnaraghi A. Artificial Neural Network Modeling of Fungus-Mediated Extracellular Biosynthesis of Zirconium Nanoparticles Using Standard Penicillium spp. J Clust Sci 2022;33:1907-21. [DOI: 10.1007/s10876-021-02111-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Salazar-garcía S, García-rodrigo JF, Delgado Buenrostro NL, Martínez Castañón GA, España Sánchez BL, Chirino YI, Gonzalez C. Zinc chloride through N-Cadherin upregulation prevents the damage induced by silver nanoparticles in rat cerebellum. J Nanopart Res 2022;24. [DOI: 10.1007/s11051-022-05541-0] [Reference Citation Analysis]
7 Bhatnagar S, Ogbonna CN, Ogbonna JC, Aoyagi H. Effect of physicochemical factors on extracellular fungal pigment-mediated biofabrication of silver nanoparticles. Green Chemistry Letters and Reviews 2022;15:274-84. [DOI: 10.1080/17518253.2022.2036376] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Jodati S, Gorji S, Sharif AP, Taramsari SM, Salehzadeh A. A Novel Biosynthesized ZnFe2O4@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Antiproliferative Studies in Breast Cancer Cell Line. J Clust Sci. [DOI: 10.1007/s10876-022-02234-5] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Goel A, Tomar S. Green synthesis and characterization of Murraya koenigii leaf extract mediated IrO 2 , SnO 2 , and Ir-SnO 2 nanoparticles. Inorganic and Nano-Metal Chemistry. [DOI: 10.1080/24701556.2022.2034016] [Reference Citation Analysis]
10 Sahu A, Singh P, Singh P, Singh Gahlot AP, Mehrotra R. Simple and rapid biogenic synthesis of colloidal silver and gold nanoparticles using Aegle marmelos fruit for SERS detection of DNA. Inorganic and Nano-Metal Chemistry. [DOI: 10.1080/24701556.2021.2025089] [Reference Citation Analysis]
11 Tarassoli Z, Najjar R, Amani A. One-pot biosynthesis of silver nanoparticles using green tea plant extract/rosemary oil and investigation of their antibacterial activity. Inorganic and Nano-Metal Chemistry. [DOI: 10.1080/24701556.2021.2025086] [Reference Citation Analysis]
12 Ahmad W, Kamboj A, Banerjee I, Jaiswal KK. Pomegranate peels mediated synthesis of calcium oxide (CaO) nanoparticles, characterization, and antimicrobial applications. Inorganic and Nano-Metal Chemistry. [DOI: 10.1080/24701556.2021.2025080] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Sirotkin N, Khlyustova A, Costerin D, Naumova I, Titov V, Agafonov A. Applications of plasma synthesized ZnO, TiO 2 , and Zn/TiO x nanoparticles for making antimicrobial wound‐healing viscose patches. Plasma Processes & Polymers 2022;19:2100093. [DOI: 10.1002/ppap.202100093] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Maroju PA, Tata P, Balapure A, Ray Dutta J, Ganesan R. Lactobacillus amylovorus derived lipase-mediated silver derivatization over poly(ε-caprolactone) towards antimicrobial coatings. Enzyme Microb Technol 2021;150:109888. [PMID: 34489041 DOI: 10.1016/j.enzmictec.2021.109888] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
15 Maleki P, Nemati F, Gholoobi A, Hashemzadeh A, Sabouri Z, Darroudi M. Green facile synthesis of silver-doped cerium oxide nanoparticles and investigation of their cytotoxicity and antibacterial activity. Inorganic Chemistry Communications 2021;131:108762. [DOI: 10.1016/j.inoche.2021.108762] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
16 Sharma D, Gulati SS, Sharma N, Chaudhary A. Sustainable synthesis of silver nanoparticles using various biological sources and waste materials: a review. emergent mater . [DOI: 10.1007/s42247-021-00292-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
17 Sharma D, Kumar N, Devki, Tiwari S, Mehrotra T, Pervaiz N, Kumar R, Ledwani L. Cytotoxic potential of Rheum emodi capped silver nanoparticles and In silico study of human CDK-4/6 proteins with hydroxyanthraquinones. Journal of the Indian Chemical Society 2021;98:100136. [DOI: 10.1016/j.jics.2021.100136] [Reference Citation Analysis]
18 Ajayi A, Larayetan R, Yahaya A, Falola OO, Ude NA, Adamu H, Oguche SM, Abraham K, Egbagba AO, Egwumah C, Ojochegbe SO, Balogun JO, Ukanu PI. Biogenic Synthesis of Silver Nanoparticles with Bitter Leaf (Vernonia amygdalina) Aqueous Extract and Its Effects on Testosterone-Induced Benign Prostatic Hyperplasia (BPH) in Wistar Rat. Chemistry Africa 2021;4:791-807. [DOI: 10.1007/s42250-021-00272-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
19 Kasinathan K, Marimuthu K, Murugesan B, Samayanan S, Cai Y, Rathinam C. Facile synthesis of highly biologically active chitosan functionalized 2D WS2 nanocomposite anchored with palladium nanoparticles for antibacterial and anticancer activity: In-vitro biomedical evaluation. Journal of Molecular Liquids 2021;335:116582. [DOI: 10.1016/j.molliq.2021.116582] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
20 Naidi SN, Harunsani MH, Tan AL, Khan MM. Green-synthesized CeO2 nanoparticles for photocatalytic, antimicrobial, antioxidant and cytotoxicity activities. J Mater Chem B 2021;9:5599-620. [PMID: 34161404 DOI: 10.1039/d1tb00248a] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
21 Khatamifar M, Fatemi SJ, Torkzadeh-mahani M, Mohammadi M, Hassanshahian M. Green and eco-friendly synthesis of silver nanoparticles by Quercus infectoria galls extract: thermal behavior, antibacterial, antioxidant and anticancer properties. Particulate Science and Technology 2021. [DOI: 10.1080/02726351.2021.1941455] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
22 Verma A, Bharadvaja N. Plant-Mediated Synthesis and Characterization of Silver and Copper Oxide Nanoparticles: Antibacterial and Heavy Metal Removal Activity. J Clust Sci. [DOI: 10.1007/s10876-021-02091-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
23 Kakakhel MA, Wu F, Feng H, Hassan Z, Ali I, Saif I, Zaheer Ud Din S, Wang W. Biological synthesis of silver nanoparticles using animal blood, their preventive efficiency of bacterial species, and ecotoxicity in common carp fish. Microsc Res Tech 2021;84:1765-74. [PMID: 33694296 DOI: 10.1002/jemt.23733] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
24 Dau TAN, Le VMH, Pham TKH, Le VH, Cho SK, Nguyen TNU, Ta TKH, Van Tran TT. Surface Functionalization of Doxorubicin loaded MCM-41 Mesoporous Silica Nanoparticles by 3-Aminopropyltriethoxysilane for Selective Anticancer 9 Effect on A549 and A549/DOX Cells. Journal of Elec Materi 2021;50:2932-9. [DOI: 10.1007/s11664-021-08813-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
25 Yu X, Li J, Mu D, Zhang H, Liu Q, Chen G. Green synthesis and characterizations of silver nanoparticles with enhanced antibacterial properties by secondary metabolites of Bacillus subtilis (SDUM301120). Green Chemistry Letters and Reviews 2021;14:190-203. [DOI: 10.1080/17518253.2021.1894244] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
26 Narayanan K, Gnanaprakash D. Branched Gold Nanostructures Through a Facile Fructose Mediated Microwave Route. J Clust Sci 2022;33:227-40. [DOI: 10.1007/s10876-020-01969-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
27 Saravanan M, Barabadi H, Vahidi H, Webster TJ, Medina-cruz D, Mostafavi E, Vernet-crua A, Cholula-diaz JL, Periakaruppan P. Emerging theranostic silver and gold nanobiomaterials for breast cancer: Present status and future prospects. Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications 2021. [DOI: 10.1016/b978-0-12-821013-0.00004-0] [Cited by in Crossref: 14] [Article Influence: 7.0] [Reference Citation Analysis]
28 Ranjbar M, Kiani M, Khakdan F. Mentha mozaffarianii mediated biogenic zinc nanoparticles target selected cancer cell lines and microbial pathogens. Journal of Drug Delivery Science and Technology 2020;60:102042. [DOI: 10.1016/j.jddst.2020.102042] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
29 Thirumagal N, Jeyakumari AP. Photocatalytic and antibacterial activities of AgNPs from Mesua Ferrea seed. SN Appl Sci 2020;2. [DOI: 10.1007/s42452-020-03650-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
30 Liang P, Qian D, Zhenfeng G, Yongyi C, Yi S, Liang L. Biological Selenium Nano-particles Modify Immune Responses of Macrophages Exposed to Bladder Tumor Antigens. J Clust Sci. [DOI: 10.1007/s10876-020-01920-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
31 Majeed S, Danish M, Mohamad Ibrahim MN, Sekeri SH, Ansari MT, Nanda A, Ahmad G. Bacteria Mediated Synthesis of Iron Oxide Nanoparticles and Their Antibacterial, Antioxidant, Cytocompatibility Properties. J Clust Sci 2021;32:1083-94. [DOI: 10.1007/s10876-020-01876-7] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]
32 Rajendran P, Maheshwari U, Muthukrishnan A, Muthuswamy R, Anand K, Ravindran B, Dhanaraj P, Balamuralikrishnan B, Chang SW, Chung WJ. Myricetin: versatile plant based flavonoid for cancer treatment by inducing cell cycle arrest and ROS-reliant mitochondria-facilitated apoptosis in A549 lung cancer cells and in silico prediction. Mol Cell Biochem 2021;476:57-68. [PMID: 32851589 DOI: 10.1007/s11010-020-03885-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
33 Pandiyan N, Murugesan B, Arumugam M, Sonamuthu J, Samayanan S, Mahalingam S. Biogenic approach for the synthesis of Ag-Au doped RuO2 nanoparticles in BMIM-PF6 ionic liquid medium: Structural characterization and its biocidal activity against pathogenic bacteria and HeLa cancerous cells. Journal of Molecular Liquids 2020;312:113245. [DOI: 10.1016/j.molliq.2020.113245] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
34 Aref MS, Salem SS. Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. Biocatalysis and Agricultural Biotechnology 2020;27:101689. [DOI: 10.1016/j.bcab.2020.101689] [Cited by in Crossref: 53] [Cited by in F6Publishing: 59] [Article Influence: 17.7] [Reference Citation Analysis]
35 Salem SS, Fouda MMG, Fouda A, Awad MA, Al-olayan EM, Allam AA, Shaheen TI. Antibacterial, Cytotoxicity and Larvicidal Activity of Green Synthesized Selenium Nanoparticles Using Penicillium corylophilum. J Clust Sci 2021;32:351-61. [DOI: 10.1007/s10876-020-01794-8] [Cited by in Crossref: 67] [Cited by in F6Publishing: 72] [Article Influence: 22.3] [Reference Citation Analysis]
36 Xing J, Gong Q, Akakuru OU, Liu C, Zou R, Wu A. Research advances in integrated theranostic probes for tumor fluorescence visualization and treatment. Nanoscale 2020;12:24311-30. [DOI: 10.1039/d0nr06867e] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
37 Kaur G, Kaur M, Thakur A, Kumar A. Recent Progress on Pyrite FeS2 Nanomaterials for Energy and Environment Applications: Synthesis, Properties and Future Prospects. J Clust Sci 2020;31:899-937. [DOI: 10.1007/s10876-019-01708-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
38 El-batal AI, Balabel NM, Attia MS, El-sayyad GS. Antibacterial and Antibiofilm Potential of Mono-dispersed Stable Copper Oxide Nanoparticles-Streptomycin Nano-drug: Implications for Some Potato Plant Bacterial Pathogen Treatment. J Clust Sci 2020;31:1021-40. [DOI: 10.1007/s10876-019-01707-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]