BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu HY, Tuckett AZ, Fennell M, Garippa R, Zakrzewski JL. Repurposing of the CDK inhibitor PHA-767491 as a NRF2 inhibitor drug candidate for cancer therapy via redox modulation. Invest New Drugs 2018;36:590-600. [PMID: 29297149 DOI: 10.1007/s10637-017-0557-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021;34:1428-83. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Lind J, Czernilofsky F, Vallet S, Podar K. Emerging protein kinase inhibitors for the treatment of multiple myeloma. Expert Opin Emerg Drugs 2019;24:133-52. [PMID: 31327278 DOI: 10.1080/14728214.2019.1647165] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
3 Yen CH, Hsiao HH. NRF2 Is One of the Players Involved in Bone Marrow Mediated Drug Resistance in Multiple Myeloma. Int J Mol Sci 2018;19:E3503. [PMID: 30405034 DOI: 10.3390/ijms19113503] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
4 Cao JX, Lu Y. Targeting CDC7 improves sensitivity to chemotherapy of esophageal squamous cell carcinoma. Onco Targets Ther 2019;12:63-74. [PMID: 30588031 DOI: 10.2147/OTT.S183629] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
5 Jung JH, Hwang J, Kim JH, Sim DY, Im E, Park JE, Park WY, Shim BS, Kim B, Kim SH. Phyotochemical candidates repurposing for cancer therapy and their molecular mechanisms. Semin Cancer Biol 2021;68:164-74. [PMID: 31883914 DOI: 10.1016/j.semcancer.2019.12.009] [Reference Citation Analysis]
6 Allegra A, Petrarca C, Di Gioacchino M, Casciaro M, Musolino C, Gangemi S. Modulation of Cellular Redox Parameters for Improving Therapeutic Responses in Multiple Myeloma. Antioxidants 2022;11:455. [DOI: 10.3390/antiox11030455] [Reference Citation Analysis]
7 Yu X, Shang X, Huang X, Yao G, Song S. Brusatol: A potential anti-tumor quassinoid from Brucea javanica. Chinese Herbal Medicines 2020;12:359-66. [DOI: 10.1016/j.chmed.2020.05.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
8 Paiboonrungruang C, Simpson E, Xiong Z, Huang C, Li J, Li Y, Chen X. Development of targeted therapy of NRF2high esophageal squamous cell carcinoma. Cell Signal 2021;86:110105. [PMID: 34358647 DOI: 10.1016/j.cellsig.2021.110105] [Reference Citation Analysis]
9 Payandeh Z, Pirpour Tazehkand A, Barati G, Pouremamali F, Kahroba H, Baradaran B, Samadi N. Role of Nrf2 and mitochondria in cancer stem cells; in carcinogenesis, tumor progression, and chemoresistance. Biochimie. 2020;179:32-45. [PMID: 32946993 DOI: 10.1016/j.biochi.2020.09.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
10 Dai B, Augustine JJ, Kang Y, Roife D, Li X, Deng J, Tan L, Rusling LA, Weinstein JN, Lorenzi PL, Kim MP, Fleming JB. Compound NSC84167 selectively targets NRF2-activated pancreatic cancer by inhibiting asparagine synthesis pathway. Cell Death Dis 2021;12:693. [PMID: 34247201 DOI: 10.1038/s41419-021-03970-8] [Reference Citation Analysis]
11 Sánchez-Ortega M, Carrera AC, Garrido A. Role of NRF2 in Lung Cancer. Cells 2021;10:1879. [PMID: 34440648 DOI: 10.3390/cells10081879] [Reference Citation Analysis]
12 Panieri E, Saso L. Potential Applications of NRF2 Inhibitors in Cancer Therapy. Oxid Med Cell Longev 2019;2019:8592348. [PMID: 31097977 DOI: 10.1155/2019/8592348] [Cited by in Crossref: 61] [Cited by in F6Publishing: 60] [Article Influence: 20.3] [Reference Citation Analysis]
13 Yen CH, Hsu CM, Hsiao SY, Hsiao HH. Pathogenic Mechanisms of Myeloma Bone Disease and Possible Roles for NRF2. Int J Mol Sci 2020;21:E6723. [PMID: 32937821 DOI: 10.3390/ijms21186723] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Zhang L, Zhang J, Jin Y, Yao G, Zhao H, Qiao P, Wu S. Nrf2 Is a Potential Modulator for Orchestrating Iron Homeostasis and Redox Balance in Cancer Cells. Front Cell Dev Biol 2021;9:728172. [PMID: 34589492 DOI: 10.3389/fcell.2021.728172] [Reference Citation Analysis]
15 Orrù C, Giordano S, Columbano A. Nrf2 in Neoplastic and Non-Neoplastic Liver Diseases. Cancers (Basel) 2020;12:E2932. [PMID: 33053665 DOI: 10.3390/cancers12102932] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Kari E, Teppo HR, Haapasaari KM, Kuusisto MEL, Lemma A, Karihtala P, Pirinen R, Soini Y, Jantunen E, Turpeenniemi-Hujanen T, Kuittinen O. Nuclear factor erythroid 2-related factors 1 and 2 are able to define the worst prognosis group among high-risk diffuse large B cell lymphomas treated with R-CHOEP. J Clin Pathol 2019;72:316-21. [PMID: 30755497 DOI: 10.1136/jclinpath-2018-205584] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
17 Wu S, Lu H, Bai Y. Nrf2 in cancers: A double-edged sword. Cancer Med. 2019;8:2252-2267. [PMID: 30929309 DOI: 10.1002/cam4.2101] [Cited by in Crossref: 108] [Cited by in F6Publishing: 102] [Article Influence: 36.0] [Reference Citation Analysis]